Climatic Change

, Volume 121, Issue 1, pp 3–13 | Cite as

Climate change: changing means and changing extremes



Ongoing global warming not only involves changes in temperature and the global mean; it affects more or less every part of the climate. Regional temperature changes are often greater or smaller than corresponding changes in the global mean. In some cases the direction of change may also be different. For example, temperature changes are higher over land than over the ocean. Precipitation increases in some regions but decreases in others. Changes in extreme events may differ from changes in the corresponding mean. Present scientific knowledge clearly indicates that the already observed global trend towards warmer conditions will continue and that it will be accompanied by changes in yet other aspects of climate. This paper highlights, as a brief review, aspects of our changing climate from the available scientific knowledge with a bearing on the energy sector. Its focus is on temperature and precipitation, with some consideration of wind and sea level, among others. While uncertainties remain as far as the magnitude of future global-scale changes is concerned, and even more so their many regional patterns, significant changes are foreseen in, for example, global and regional temperature and precipitation, sea level rise, and in the characteristics of various extreme events.


Tropical Cyclone Heat Wave Energy Sector Renewable Energy Resource Cold Extreme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This review contributes to the research efforts within the strategic research area MERGE at Lund University and within the Mistra-SWECIA research programme funded by the Foundation for Strategic Environmental Research. Jouni Räisänen (University of Helsinki, Finland) has kindly provided Fig. 2.


  1. Bender FAM, Ramanathan V, Tselioudis G (2012) Changes in extratropical storm track cloudiness 1983–2008: observational support for a poleward shift. Clim Dyn 38:2037–2053. doi: 10.1007/s00382-011-1065-6 CrossRefGoogle Scholar
  2. Berg P, Moseley C, Haerter JO (2013) Strong increase in convective precipitation in response to higher temperatures. Nat Geosci 6:181–185. doi: 10.1038/ngeo1731 CrossRefGoogle Scholar
  3. Boberg F, Berg P, Theijl P, Gutowski W, Christensen JH (2010) Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Clim Dyn 35:1509–1520. doi: 10.1007/s00382-009-0683-8 CrossRefGoogle Scholar
  4. Botzen WJW, Bouwer LM, van den Bergh JCJM (2010) Climate change and hailstorm damage: empirical evidence and implications for agriculture and insurance. Resour Energy Econ 32(3):341–362. doi: 10.1016/j.reseneeco.2009.10.004 CrossRefGoogle Scholar
  5. Burke EJ, Brown SJ (2008) Evaluating uncertainties in the projection of future drought. J Hydrometeorol 9(2):292–299. doi: 10.1175/2007JHM929.1 CrossRefGoogle Scholar
  6. Christidis N, Stott PA, Brown SJ (2011) The role of human activity in the recent warming of extremely warm daytime temperatures. J Clim 24(7):1922–1930. doi: 10.1175/2011JCLI4150.1 CrossRefGoogle Scholar
  7. Dai A (2011) Drought under global warming: a review. WIREs Clim Chang 2:45–65. doi: 10.1002/wcc.81 CrossRefGoogle Scholar
  8. Del Genio AD, Yao MS, Jonas J (2007) Will moist convection be stronger in a warmer climate? Geophys Res Lett 34, L16703. doi: 10.1029/2007GL030525 Google Scholar
  9. Duffy PB, Tebaldi C (2012) Increasing prevalence of extreme summer temperatures in the U.S. Clim Chang 111(2):487–495. doi: 10.1007/s10584-012-0396-6 CrossRefGoogle Scholar
  10. Fenger J (2007) Impacts of Climate Change on Renewable Energy Sources: Their role in the Nordic energy system. Nordic Council of Ministers, CopenhagenGoogle Scholar
  11. Fink AH, Brücher T, Krüger A, Leckebush GC, Pinto JG, Ulbrich U (2004) The 2003 European summer heatwaves and drought—synoptic diagnosis and impacts. Weather 59(8):209–216. doi: 10.1256/wea.73.04 CrossRefGoogle Scholar
  12. Gastienau G, Soden BJ (2009) Model projected changes of extreme wind events in response to global warming. Geophys Res Lett 36, L10810. doi: 10.1029/2009GL037500 CrossRefGoogle Scholar
  13. Good P et al (2011) A review of recent developments in climate change science. Part I: Understanding of future change in the large-scale climate system. Prog Phys Geogr 35(3):281–296. doi: 10.1177/0309133311407651 CrossRefGoogle Scholar
  14. Haerter JO, Berg P, Hagemann S (2010) Heavy rain intensity distributions on varying time scales and at different temperatures. J Geophys Res 115, D17102. doi: 10.1029/2009JD013384 CrossRefGoogle Scholar
  15. Hegerl G, Zwiers F (2011) Use of models in detection and attribution of climate change. WIREs Clim Chang 2(4):570–591. doi: 10.1002/wcc.121 CrossRefGoogle Scholar
  16. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699. doi: 10.1175/JCLI3990.1 CrossRefGoogle Scholar
  17. IEA (2013) Redrawing the Energy-Climate Map. World Energy Outlook Special Report. Organisation for Economic Co-operation and Development and International Energy Agency, ParisGoogle Scholar
  18. IPCC (2007a) Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  19. IPCC (2007b) Climate Change 2007: Mitigation of Climate Change: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  20. IPCC (2007c) Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  21. IPCC (2011) Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  22. IPCC (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  23. Jones GS, Stott PA, Christidis N (2008) Human contribution to rapidly increasing frequency of very warm Northern Hemisphere summers. J Geophys Res 113, D02109. doi: 10.1029/2007JD008914 CrossRefGoogle Scholar
  24. Kharin VV, Zwiers FW (2005) Estimating extremes in transient climate change simulations. J Clim 18(8):1156–1173. doi: 10.1175/JCLI3320.1 CrossRefGoogle Scholar
  25. Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensembles of global coupled model simulations. J Clim 20(8):1419–1444. doi: 10.1175/JCLI4066.1 CrossRefGoogle Scholar
  26. Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea G, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163. doi: 10.1038/ngeo779 CrossRefGoogle Scholar
  27. Koch H, Vögele S (2009) Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change. Ecol Econ 68(7):2031–2039. doi: 10.1016/j.ecolecon.2009.02.015 CrossRefGoogle Scholar
  28. Kopytko N, Perkins J (2011) Climate change, nuclear power and the adaptation-mitigation dilemma. Energy Policy 39(1):318–333. doi: 10.1016/j.enpol.2010.09.046 CrossRefGoogle Scholar
  29. Marsh PT, Brooks HE, Karoly DJ (2007) Assessment of the severe weather environment in North America simulated by a global climate model. Atmos Sci Lett 8(4):100–106. doi: 10.1002/asl.159 CrossRefGoogle Scholar
  30. McDonald RE (2011) Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones. Clim Dyn 37(7–8):1399–1425. doi: 10.1007/s00382-010-0916-x CrossRefGoogle Scholar
  31. McInnes KL, Erwin TA, Bathols JM (2011) Global climate model projected changes in 10 m wind speed and direction due to anthropogenic climate change. Atmos Sci Lett 12(4):325–333. doi: 10.1002/asl.341 CrossRefGoogle Scholar
  32. Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63:41–55. doi: 10.1111/j.1600-0870.2010.00466.x CrossRefGoogle Scholar
  33. Orlowsky B, Seneviratne SI (2012) Global changes in extreme events: regional and seasonal dimension. Clim Chang 110:669–696. doi: 10.1007/s10584-011-0122-9 CrossRefGoogle Scholar
  34. Patt A, Pfenninger S, Lilliestam J (2013) Vulnerability of solar energy infrastructure and output to climate change. Climatic Change. doi: 10.1007/s10584-013-0887-0
  35. Pryor SC, Barthelmie RJ (2013) Assessing the vulnerability of wind energy to climate change and extreme events. Climatic Change. doi: 10.1007/s10584-013-0889-y
  36. Punzet M, Voss F, Voss A, Kynast E, Bärlund I (2012) A global approach to assess the potential impact of climate change on stream water temperatures and related in-stream first order decay rates. J Hydrometeorol 13(3):1052–1065. doi: 10.1175/JHM-D-11-0138.1 CrossRefGoogle Scholar
  37. Rübbelke D, Vögele S (2011) Impacts of climate change on European critical infrastructures: The case of the power sector. Environ Sci Policy 14(1):53–63. doi: 10.1016/j.envsci.2010.10.007 CrossRefGoogle Scholar
  38. Rummukainen M (2012) Changes in climate and weather extremes in the 21st century. WIREs Clim Chang 3(2):115–129. doi: 10.1002/wcc.160 CrossRefGoogle Scholar
  39. Rummukainen M, Räisänen J, Björnsson H, Christensen JH (2010) Physical climate science since IPCC AR4 – A brief update on new findings between 2007 and April 2010. Nordic Council of Ministers, CopenhagenGoogle Scholar
  40. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. doi: 10.1038/nature02300 CrossRefGoogle Scholar
  41. Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LLA, Riva REM (2012) Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dyn 38:1109–1209. doi: 10.1007/s00382-011-1057-6 CrossRefGoogle Scholar
  42. Smith JB et al (2009) Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”. Proc Natl Acad Sci 106(11):4133–4137. doi: 10.1073/pnas.0812355106 CrossRefGoogle Scholar
  43. Sterl A, Severijns C, Dijkstra H, Hazeleger W, van Oldenborgh GJ, van den Broeke M, Burgers G, van den Hurk B, van Leeuwen PJ, van Velthoven P (2008) When can we expect extremely high surface temperatures? Geophys Res Lett 35, L14703. doi: 10.1029/2008GL034071 CrossRefGoogle Scholar
  44. Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614. doi: 10.1038/nature03089 CrossRefGoogle Scholar
  45. Stott PA, Gillett NP, Hegerl GC, Karoly DJ, Stone DA, Zhang X, Zwiers F (2010) Detection and attribution of climate change: a regional perspective. WIREs Clim Chang 1(2):192–211. doi: 10.1002/wcc.34 Google Scholar
  46. Thorsteinsson T, Björnsson H (2012) Climate change and energy systems: Impacts, risks and adaptation in the Nordic and Baltic countries. Nordic Council of Ministers, CopenhagenGoogle Scholar
  47. Trapp RJ, Diffenbaugh NS, Brooks HE, Baldwin ME, Robinson ED, Pal JS (2007) Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc Natl Acad Sci 104(50):19719–19723. doi: 10.1073/pnas.0705494104 CrossRefGoogle Scholar
  48. Trapp RJ, Diffenbaugh NS, Gluhovsky A (2009) Transient response of severe thunderstorm forcing to elevated greenhouse gas concentrations. Geophys Res Lett 36, L01703. doi: 10.1029/2008GL036203 CrossRefGoogle Scholar
  49. Trenberth KE (2012) Framing the way to relate climate extremes to climate change. Clim Chang 115(2):283–290. doi: 10.1007/s10584-012-0441-5 CrossRefGoogle Scholar
  50. Ulbrich U, Leckebusch GC, Pinto JG (2009) Extra-tropical cyclones in the present and future climate: a review. Theor Appl Climatol 96:117–131. doi: 10.1007/s00704-008-0083-8 CrossRefGoogle Scholar
  51. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci 106(51):21527–21532. doi: 10.1073/pnas.0907765106 CrossRefGoogle Scholar
  52. WMO (2011) WMO Statement on the status of the global climate in 2010: WMO-No. 1074. World Meteorological Organization, GenevaGoogle Scholar
  53. Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32, L18701. doi: 10.1029/2005GL023684 CrossRefGoogle Scholar
  54. Zwiers FW, Zhang X, Feng Y (2011) Anthropogenic influence on long return period daily temperature extremes at regional scales. J Clim 24(3):881–992. doi: 10.1175/2010JCLI3908.1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Centre for Environmental and Climate Research (CEC)Lund UniversityLundSweden

Personalised recommendations