Advertisement

Climatic Change

, Volume 121, Issue 1, pp 93–102 | Cite as

Vulnerability of solar energy infrastructure and output to climate change

  • Anthony Patt
  • Stefan Pfenninger
  • Johan Lilliestam
Article

Abstract

This paper reviews the potential vulnerability of solar energy systems to future extreme event risks as a consequence of climate change. We describe the three main technologies likely to be used to harness sunlight—thermal heating, photovoltaic (PV), and concentrating solar power (CSP)—and identify critical climate vulnerabilities for each one. We then compare these vulnerabilities with assessments of future changes in mean conditions and extreme event risk levels. We do not identify any vulnerabilities severe enough to halt development of any of the technologies mentioned, although we do find a potential value in exploring options for making PV cells more heat-resilient and for improving the design of cooling systems for CSP.

Keywords

Thermal Storage Concentrate Solar Power Sand Storm Cloudy Weather Flat Plate Collector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to acknowledge the helpful comments of the organizers of a conference on energy system vulnerability to climate change, held in June 2010 at the International Centre for Theoretical Physics (ICTP), in Trieste, Italy, and three anonymous reviewers. Funding came from the ICTP, the International Atomic Energy Agency, and the RESPONSES project of the European Union Seventh Framework Programme.

References

  1. Aringhoff R, Brakmann G, Geyer M, Teske S (2005) Concentrated solar thermal power - now! Greenpeace, Amsterdam, ESTIA, Brussels and SolarPACES, Aguadulce, SpainGoogle Scholar
  2. Armstrong S, Hurley W (2010) A new methodology to optimise solar energy extraction under cloudy conditions. Renew Energy 35(4):780–787. doi: 10.1016/j.renene.2009.10.018 CrossRefGoogle Scholar
  3. Bengtsson L, Hodges KI, Esch M, Keenlyside N, Kornblueh L, Luo J, Yamagata T (2007) How may tropical cyclones change in a warmer climate? Tellus A 59(4):539–561. doi: 10.1111/j.1600-0870.2007.00251.x CrossRefGoogle Scholar
  4. Carr AJ, Pryor TL (2003) A comparison of the performance of different PV module types in temperate climates. Sol Energy 76(1–3):285–294. doi: 10.1016/j.solener.2003.07.026 Google Scholar
  5. Crook JA, Jones LA, Forster PM, Crook R (2011) Climate change impacts on future photovoltaic and concentrated solar power energy systems. Energy Environ Sci 4:3101–3109CrossRefGoogle Scholar
  6. Damerau K, Williges K, Patt A, Gauché P (2011) Costs of reducing water use of concentrating solar power to sustainable levels: scenarios for North Africa. Energy Policy 39:4391–4398. doi: 10.1016/j.enpol.2011.04.059 CrossRefGoogle Scholar
  7. Deutsche Gesellschaft für Sonnenenergie (2008) Planning and installing photovoltaic systems. Earthscan, LondonGoogle Scholar
  8. DLR (2007) Concentrating power for seawater desalination. German Aerospace Center. http://www.dlr.de/tt/Portaldata/41/Resources/dokumente/institut/system/projects/aqua-csp/AQUA-CSP-Full-Report-Final.pdf. Accessed 8 April 2013
  9. DOE (2007) Concentrating solar power commercial application study: Reducing water consumption of concentrating solar power electricity generation. U.S. Department of Energy, WashingtonGoogle Scholar
  10. Eltawil MA, Zhao Z (2010) Grid-connected photovoltaic power systems: Technical and potential problems — A review. Renew Sustain Energy Rev 14(1):112–129. doi: 10.1016/j.rser.2009.07.015 CrossRefGoogle Scholar
  11. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nat 436:686–688CrossRefGoogle Scholar
  12. ESTIF (2009) Solar thermal markets in Europe—Trends and market statistics 2008. European solar thermal industry federation. Renewable Energy House, BrusselsGoogle Scholar
  13. Goossens D, Van Kerschaever E (1999) Aeolian dust deposition on photovoltaic solar cells: The effects of wind velocity and airborne dust concentration on cell performance. Sol Energy 66(4):277–289. doi: 10.1016/S0038-092X(99)00028-6 CrossRefGoogle Scholar
  14. Gottschalg R, Betts T, Williams S, Sauter D, Infield D, Kearney M (2004) A critical appraisal of the factors affecting energy production from amorphous silicon photovoltaic arrays in a maritime climate. Sol Energy 77(6):909–916. doi: 10.1016/j.solener.2004.06.015 CrossRefGoogle Scholar
  15. Harder E, Gibson JM (2011) The costs and benefits of large-scale solar photovoltaic power production in Abu Dhabi, United Arab Emirates. Renew Energy 36(2):789–796. doi: 10.1016/j.renene.2010.08.006 CrossRefGoogle Scholar
  16. Honeyborne R (2009) Flat plate versus evacuated tube solar collectors. ITS Solar, CapetownGoogle Scholar
  17. IEA (2010) Energy Technology Perspectives 2010: Scenarios and Strategies to 2050. OECD Publishing, Paris. http://www.oecdilibrary.org/oecd/content/book/9789264041431-en. Accessed 23 April 2013Google Scholar
  18. Jacob D, Winner D (2009) Effect of climate change on air quality. Atmospheric Environ 43(1):51–63CrossRefGoogle Scholar
  19. Jacobson MZ, Delucchi MA (2010) Readers respond on "A path to sustainable energy by 2030". Scientific American. http://www.scientificamerican.com/article.cfm?id = letters-march-2010. Accessed 5 April 2013Google Scholar
  20. Jewell WT, Unruh TD (1990) Limits on cloud-induced fluctuation in photovoltaic generation. IEEE Trans Energy Convers 5(1):8–14. doi: 10.1109/60.50805 CrossRefGoogle Scholar
  21. Jilbert T, Reichart G, Aeschlimann B, Günther D, Boer W, de Lange G (2010) Climate-controlled multidecadal variability in North African dust transport to the Mediterranean. Geol 38(1):19–22. doi: 10.1130/G25287.1 CrossRefGoogle Scholar
  22. Kelly NA, Gibson TL (2009) Improved photovoltaic energy output for cloudy conditions with a solar tracking system. Sol Energy 83(11):2092–2102. doi: 10.1016/j.solener.2009.08.009 CrossRefGoogle Scholar
  23. Kharin V, Zwiers F (2005) Estimating extremes in transient climate change simulations. J Clim 18:1156–1173. doi: 10.1175/JCLI3320.1 CrossRefGoogle Scholar
  24. Khosla V (2008) Scalable electric power from solar energy. The Climate Group, BrusselsGoogle Scholar
  25. Kurtz S, Granata J, Quintana M, (2009a) Photovoltaic Reliability R&D Toward a Solar-Powered World. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 27Google Scholar
  26. Kurtz S, Miller D et al (2009b) Evaluation of high-temperature exposure of photovoltaic modules. National Renewable Energy Laboratory, PhiladelphiaGoogle Scholar
  27. Lobell DB, Bonfils C, Duffy PB (2007) Climate change uncertainty for daily minimum and maximum temperatures: A model intercomparison. Geophys Res Lett 34(5), L05715. doi: 10.1029/2006GL028726 CrossRefGoogle Scholar
  28. Makrides G, Zinsser B, Georghiou GE, Schubert M, Werner JH (2009) Temperature behaviour of different photovoltaic systems installed in Cyprus and Germany. Sol Energy Mater Sol Cells 93(6–7):1095–1099. doi: 10.1016/j.solmat.2008.12.024 Google Scholar
  29. Márquez Salazar C (2008) An overview of CSP in Europe, North Africa and the Middle East. CSP today, LondonGoogle Scholar
  30. McDonald R, Bleaken D, Cresswell D, Pope V, Senior C (2005) Tropical storms: Representation and diagnosis in climate models and the impacts of climate change. Clim Dyn 25(1):19–36. doi: 10.1007/s00382-004-0491-0 CrossRefGoogle Scholar
  31. Meehl GA, Stocker TF, Collins WD et al (2007) Global climate projections. In: Solomon S, Qin D, Manning M (eds) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 747–846Google Scholar
  32. Meehl GA, Tebaldi C (2004) More intense, more frequent, ad longer lasting heat waves in the 21st century. Sci 305:994–997. doi: 10.1126/science.1098704 CrossRefGoogle Scholar
  33. Mohandes B, El-Chaar L, Lamont L (2009) Application study of 500W photovoltaic (PV) system in the UAE. Appl Solar Energy 45(4):242–247. doi: 10.3103/S0003701X09040057 CrossRefGoogle Scholar
  34. Mohring HD, Stellbogen D, Schiffer R, et al. (2004) Outdoor performance of polycrystalline thin film PV modules in different European climates. In Proceedings of the 19th European Photovoltaic Solar Energy Conference, pp 2098–2101Google Scholar
  35. Nelson J (2003) The physics of solar cells. Imperial College Press, LondonCrossRefGoogle Scholar
  36. Niall S, Walsh K (2005) The impact of climate change on hailstorms in southeastern Australia. Int J Climatol 25:1933–1952. doi: 10.1002/joc.1233 CrossRefGoogle Scholar
  37. Norton B (2006) Anatomy of a solar collector: Developments in materials, components and efficiency improvements in solar thermal collector systems. Refocus 7(3):32–35. doi: 10.1016/S1471-0846(06)70570-4 CrossRefGoogle Scholar
  38. Norton B, Edmonds J (1991) Aqueous propylene-glycol concentrations for the freeze protection of thermosyphon solar energy water heaters. Sol Energy 47(5):375–382. doi: 10.1016/0038-092X(91)90031-Q CrossRefGoogle Scholar
  39. Osterwald CR, McMahon TJ (2009) History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature review. ProgPhotovolt: Res Appl 17(1):11–33. doi: 10.1002/pip.861 CrossRefGoogle Scholar
  40. Pitz-Paal R, Dersch J, Milow B (2004) ECOSTAR: European Concentrated Solar Thermal Roadmapping. German Aerospace Center (DLR), StuttgartGoogle Scholar
  41. Prospero JM, Lamb PJ (2003) African droughts and dust transport to the Caribbean: climate change implications. Sci 302(5647):1024–1027. doi: 10.1126/science.1089915 CrossRefGoogle Scholar
  42. Radziemska E (2003) The effect of temperature on the power drop in crystalline silicon solar cells. Renew Energy 28(1):1–12. doi: 10.1016/S0960-1481(02)00015-0 CrossRefGoogle Scholar
  43. Richter C, Teske S, Short R (2009) Concentrating solar power. Global outlook 09. Greenpeace International, SolarPACES, ESTELA, BrusselsGoogle Scholar
  44. Royne A, Dey CJ, Mills DR (2005) Cooling of photovoltaic cells under concentrated illumination: a critical review. Sol Energy Mater Sol Cells 86(4):451–483. doi: 10.1016/j.solmat.2004.09.003 CrossRefGoogle Scholar
  45. Salinger MJ, Griffiths GM, Gosai A (2005) Extreme pressure differences at 0900 NZST and winds across New Zealand. Int J Climatol 25:1203–1222. doi: 10.1002/joc.1162 CrossRefGoogle Scholar
  46. Seyboth K, Beurskens L, Langniss O, Sims R (2008) Recognising the potential for renewable energy heating and cooling. Energy Policy 36(7):2460–2463. doi: 10.1016/j.enpol.2008.02.046 CrossRefGoogle Scholar
  47. Smits A, Klein Tank A, Können G (2005) Trends in storminess over the Netherlands. Int J Climatol 25:1331–1344. doi: 10.1002/joc.1195 CrossRefGoogle Scholar
  48. Speer B, Mendelsohn M, Cory K (2010) Insuring solar photovoltaics: Challenges and possible solutions: NREL/TP-6A2-46932. National Renewable Energy Laboratory, GoldenCrossRefGoogle Scholar
  49. SPF (2009) Schlussbericht Impact Resistance Solarthermische Kollektoren [Final Report on the Impact Resistance of Solar Thermal Collectors]. Institut für Solartechnik SPF, HSR, Rapperswil, SwitzerlandGoogle Scholar
  50. Stancich R (2010) CSP O&M: Dust-proof solar fields. CSP today, LondonGoogle Scholar
  51. TamizhMani G (2008) Failure analysis of design qualification testing: 2007 vs. 2005. Photovolt Int 1:112–116Google Scholar
  52. Tanagnostopoulos Y, Themelis P (2010) Natural Flow Air Cooled Photovoltaics. In: Angelopoulos A, Fildisis T (eds.) In 7th International Conference of the Balkan Physical Union. American Institute of Physics, Alexandroupolis, Greece, pp 1013–1018. doi:  10.1063/1.3322300. http://link.aip.org/link/?APC/1203/1013/1
  53. Thornton JP (1992) The effect of sandstorms on PV arrays and components. National Renewable Energy Laboratory, GoldenGoogle Scholar
  54. Trenberth KE, Fasullo J (2009) Global warming due to increasing absorbed solar radiation. Geophys Res Lett 36(7), L07706. doi: 10.1029/2009GL037527 CrossRefGoogle Scholar
  55. Trenberth KE, Jones PD, Ambenje P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M (eds) Climate change 2007: The physical science basis. Contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 236–336Google Scholar
  56. Trinkl C, Zörner W, Alt C, Stadler C (2005) Performance of vacuum tube and flat plate collectors concerning domestic hot water preparation and room heating. Appl Sci 2005:2–5Google Scholar
  57. Vick B, Clark RN (2005) Effect of Panel Temperature on a Solar-PV AC Water Pumping System. In Proceedings of the International Solar Energy Society (ISES). Orlando, Florida, pp. 159–164Google Scholar
  58. Weisheimer A, Palmer TN (2005) Changing frequency of occurence of extreme seasonal-mean temperatures under global warming. Geophys Res Lett 32(20), L20721. doi: 10.1029/2005GL023365 CrossRefGoogle Scholar
  59. Williges K, Lilliestam J, Patt A (2010) Making concentrated solar power competitive with coal: The costs of a European feed-in tariff. Energy Policy 38(6):3089–3097. doi: 10.1016/j.enpol.2010.01.049 CrossRefGoogle Scholar
  60. Wohlgemuth JH (2003) Long-term photovoltaic module reliability. In NCPV and Solar Program Review Meeting, Denver, Colorado, USA. NREL/CD-520-33586, 2003:179–183Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Anthony Patt
    • 1
    • 2
  • Stefan Pfenninger
    • 1
    • 3
  • Johan Lilliestam
    • 1
    • 4
  1. 1.International Institute for Applied Systems AnalysisLaxenburgAustria
  2. 2.ETH ZurichZurichSwitzerland
  3. 3.Imperial College LondonLondonUK
  4. 4.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations