Skip to main content

Advertisement

Log in

The danger of overvaluing methane’s influence on future climate change

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Minimizing the future impacts of climate change requires reducing the greenhouse gas (GHG) load in the atmosphere. Anthropogenic emissions include many types of GHG’s as well as particulates such as black carbon and sulfate aerosols, each of which has a different effect on the atmosphere, and a different atmospheric lifetime. Several recent studies have advocated for the importance of short timescales when comparing the climate impact of different climate pollutants, placing a high relative value on short-lived pollutants, such as methane (CH4) and black carbon (BC) versus carbon dioxide (CO2). These studies have generated confusion over how to value changes in temperature that occur over short versus long timescales. We show the temperature changes that result from exchanging CO2 for CH4 using a variety of commonly suggested metrics to illustrate the trade-offs involved in potential carbon trading mechanisms that place a high value on CH4 emissions. Reducing CH4 emissions today would lead to a climate cooling of approximately ~0.5 °C, but this value will not change greatly if we delay reducing CH4 emissions by years or decades. This is not true for CO2, for which the climate is influenced by cumulative emissions. Any delay in reducing CO2 emissions is likely to lead to higher cumulative emissions, and more warming. The exact warming resulting from this delay depends on the trajectory of future CO2 emissions but using one business-as usual-projection we estimate an increase of 3/4 °C for every 15-year delay in CO2 mitigation. Overvaluing the influence of CH4 emissions on climate could easily result in our “locking” the earth into a warmer temperature trajectory, one that is temporarily masked by the short-term cooling effects of the CH4 reductions, but then persists for many generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458(7242):1163–1166. doi:10.1038/nature08019

    Article  Google Scholar 

  • Archer D, Brovkin V (2008) The millennial atmospheric lifetime of anthropogenic CO2. Clim Chang 90(3):297. doi:10.1007/s10584-008-9413-1

    Article  Google Scholar 

  • Azar C, Johansson DJA (2012) On the relationship between metrics to compare greenhouse gases – the case of IGTP, GWP and SGTP. Earth Syst Dynam 3(2):139–147. doi:10.5194/esd-3-139-2012

    Article  Google Scholar 

  • Berntsen T, Tanaka K, Fuglestvedt JS (2010) Does black carbon abatement hamper CO(2) abatement? A letter. Clim Chang 103(3–4):627–633

    Article  Google Scholar 

  • Daniel J, Solomon S, Sanford T, McFarland M, Fuglestvedt J, Friedlingstein P (2012) Limitations of single-basket trading: lessons from the Montreal Protocol for climate policy. Clim Chang 111(2):241–248. doi:10.1007/s10584-011-0136-3

    Article  Google Scholar 

  • Davis SJ, Caldeira K, Matthews HD (2010) Future CO(2) emissions and climate change from existing energy infrastructure. Science 329(5997):1330–1333. doi:10.1126/science.1188566

    Article  Google Scholar 

  • Derwent RG (1990) Trace gases and their relative contribution to the greenhouse effect. Atomic Energy Research Establishment, Document: AERE R 13716, Harwell

  • Fisher DA, Hales CH, Wang W-C, Ko MKW, Sze ND (1990) Model calculations of the relative effects of CFCs and their replacements on global warming. Nature 344:513–516

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland RV (2007) Changes in atmospheric consituents and in radiative forcing. paper presented at the climate change 2007: the physical science-basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

  • Fuglestvedt JS, Berntsen TK, Godal O, Skodvin T (2000) Climate implications of GWP-based reductions in greenhouse gas emissions. Geophys Res Lett 27(3):409–412. doi:10.1029/1999gl010939

    Article  Google Scholar 

  • Fuglestvedt JS, Berntsen TK, Godal O, Sausen R, Shine KP, Skodvin T (2003) Metrics of climate change: assessing radiative forcing and emission indices. Clim Chang 58(3):267–331. doi:10.1023/a:1023905326842

    Article  Google Scholar 

  • Fuglestvedt JS, Shine KP, Berntsen T, Cook J, Lee DS, Stenke A, Skeie RB, Velders GJM, Waitz IA (2010) Transport impacts on atmosphere and climate: metrics. Atmos Environ 44(37):4648–4677. doi:10.1016/j.atmosenv.2009.04.044

    Article  Google Scholar 

  • Gillett NP, Matthews HD (2010) Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases. Environ Res Lett 5(3). doi:10.1088/1748-9326/5/3/034011

  • Hammitt JK, Jain AK, Adams JL, Wuebbles DJ (1996) A welfare-based index for assessing environmental effects of greenhouse-gas emissions. Nature 381:301–303

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lacis A, Oinas V (2000) Global warming in the twenty-first century: an alternative scenario. Proc Natl Acad Sci 97(18):9875–9880

    Article  Google Scholar 

  • Howarth RW, Santoro R, Ingraffea A (2011) Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim Chang 106(4):679–690. doi:10.1007/s10584-011-0061-5

    Article  Google Scholar 

  • Howarth R, Santoro R, Ingraffea A (2012) Venting and leaking of methane from shale gas development: response to Cathles et al. Clim Chang 113(2):537–549. doi:10.1007/s10584-012-0401-0

    Article  Google Scholar 

  • Humbert R (2010) Losing time, not buying time. http://www.realclimate.org/index.php/archives/2010/12/losing-time-not-buying-time/

  • Joos F, Roth R, Fuglestvedt JS, Peters GP, Enting IG, von Bloh W, Brovkin V, Burke EJ, Eby M, Edwards NR, Friedrich T, Frölicher TL, Halloran PR, Holden PB, Jones C, Kleinen T, Mackenzie FT, Matsumoto K, Meinshausen M, Plattner GK, Reisinger A, Segschneider J, Shaffer G, Steinacher M, Strassmann K, Tanaka K, Timmermann A, Weaver AJ (2013) Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos Chem Phys 13(5):2793–2825. doi:10.5194/acp-13-2793-2013

    Article  Google Scholar 

  • Kriegler E, Hall JW, Held H, Dawson R, Schellnhuber HJ (2009) Imprecise probability assessment of tipping points in the climate system. Proc Natl Acad Sci 106(13):5041–5046

    Article  Google Scholar 

  • Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature 344(6266):529–531

    Article  Google Scholar 

  • Manne AS, Richels RG (2001) An alternative approach to establishing trade-offs among greenhouse gases. Nature 410(6829):675–677

    Article  Google Scholar 

  • O'Neill B (2000) The jury is still out on global warming potentials. Clim Chang 44(4):427–443. doi:10.1023/a:1005582929198

    Article  Google Scholar 

  • Peters GP, Aamaas B, Berntsen T, Fuglestvedt JS (2011) The integrated global temperature change potential (iGTP) and relationships between emission metrics. Environ Res Lett 6(4). doi:10.1088/1748-9326/6/4/044021

  • Prather M, Derwent R, Ehhalt D, Fraser P, Sanhueza E, Zhou X (1994) Other trace gases and atmospheric chemistry. Climate Change 94:77–126

    Google Scholar 

  • Ramanathan V, Xu Y (2010) The Copenhagen accord for limiting global warming: criteria, constraints, and available avenues. Proc Natl Acad Sci 107(18):8055–8062

    Article  Google Scholar 

  • Schrag DP (2012) Is shale gas good for climate change? Daedalus 141(2):72–80. doi:10.1162/DAED_a_00147

    Article  Google Scholar 

  • Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Improved attribution of climate forcing to emissions. Science 326(5953):716–718. doi:10.1126/science.1174760

    Article  Google Scholar 

  • Shindell D, Kuylenstierna JCI, Vignati E, van Dingenen R, Amann M, Klimont Z, Anenberg SC, Muller N, Janssens-Maenhout G, Raes F, Schwartz J, Faluvegi G, Pozzoli L, Kupiainen K, Hoglund-Isaksson L, Emberson L, Streets D, Ramanathan V, Hicks K, Oanh NTK, Milly G, Williams M, Demkine V, Fowler D (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335(6065):183–189. doi:10.1126/science.1210026

    Article  Google Scholar 

  • Shine K (2009) The global warming potential—the need for an interdisciplinary retrial. Clim Chang 96(4):467–472. doi:10.1007/s10584-009-9647-6

    Article  Google Scholar 

  • Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Chang 68(3):281–302. doi:10.1007/s10584-005-1146-9

    Article  Google Scholar 

  • Shine KP, Berntsen TK, Fuglestvedt JS, Skeie RB, Stuber N (2007) Comparing the climate effect of emissions of short- and long-lived climate agents. Phil Trans R Soc A Math Phys Eng Sci 365(1856):1903–1914. doi:10.1098/rsta.2007.2050

    Article  Google Scholar 

  • Socolow R, Desmond M, Aines R, Blackstock J, Bolland O, Kaarsberg T, Lewis N, Mazzotti M, Pfeffer A, Sawyer K, Siirola J, Smit B, Wilcox J (2011) Direct air capture of CO2 with chemicals. American Physical Society

  • Solomon S, Pierrehumbert RT, Matthews DL, Daniel JS (2011) Atmospheric Composition Irreversible Climate Change and Mitigation Policy. WCRP OSC Climate Research in Service to Society (24–28 October 2011. Denver, United States

  • Tanaka K, O’Neill BC, Rokityanskiy D, Obersteiner M, Tol RSJ (2009) Evaluating Global Warming Potentials with historical temperature. Clim Chang 96(4):443–466. doi:10.1007/s10584-009-9566-6

    Article  Google Scholar 

  • Wigley TML (1998) The Kyoto Protocol: CO2, CH4 and climate implications. Geophys Res Lett 25(13):2285–2288. doi:10.1029/98gl01855

    Article  Google Scholar 

  • Wigley TML (2008) MAGICC/SCENGEN 5.3: user manual (version 2). . UCAR Climate and Global Dynamics Division

  • Wigley TML, Richels R, Edmonds JA (1996) Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature 379(6562):240–243

    Article  Google Scholar 

  • Wigley T, Raper S, Salmon M, Hulme M (1997) MAGICC: Model for the Assessment of Greenhouse-gas Induced Climate Change: Version 2.3. Climatic Research Unit, Norwich, United Kingdom

  • Wuebbles DJ (1989) Beyond CO2—the other greenhouse gases. Lawrence Livermore National Laboratory report UCRL-99883; Air and Waste Management Association paper 89–119.4

Download references

Acknowledgements

We recognize the substantial contributions of three anonymous reviewers to the quality of this manuscript. Conversations with V. Ramanathan and M. Molina contributed to our understanding of these topics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie K. Shoemaker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 301 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoemaker, J.K., Schrag, D.P. The danger of overvaluing methane’s influence on future climate change. Climatic Change 120, 903–914 (2013). https://doi.org/10.1007/s10584-013-0861-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-013-0861-x

Keywords

Navigation