Climatic Change

, Volume 111, Issue 3–4, pp 819–833 | Cite as

Climatic trends and impact of climate change on agriculture in an arid Andean valley

  • Melitta Fiebig-Wittmaack
  • Orlando Astudillo
  • Elaine Wheaton
  • Virginia Wittrock
  • César Perez
  • Antonio Ibacache


Little is known about climate change and its impacts for the arid coastal and mountainous regions in northern Chile. The Elqui river basin, part of the Norte Chico of Chile between 27ºS and 33ºS latitude, is located south of the hyper-arid Atacama desert. Despite water scarcity, agricultural development in this region has been enhanced by agronomic practices and the marketing of valuable products. This paper characterizes the actual climate conditions and presents an overview and analyses of past climate variability, and future possible climate trends, emphasizing those relevant to agriculture. Precipitation shows an important decrease during the first decades of the past century. Runoff shows decreasing trends for the first half of the past century and increases for 1960 to 1985. Drought appears to be increasing. Statistical downscaling was accomplished using the Long Ashton Research Station Weather Generator. Both future periods of 2011 to 2030 and 2046–65 showed trends to higher minimum and maximum temperature. The number of hot days (maximum temperature greater than or equal to 30°C) has a strong increasing trend during October to April. Even though the downscaled results for precipitation do not show trends, the continuation of the present trend of low amounts is a concern. We discuss some implications of climatic changes for agriculture and we emphasize the importance of adaptation, especially to deal with water scarcity.


Water Scarcity Climate Index Statistical Downscaling Meteorological Drought Statistical Downscaling Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was partly supported by the Institutional Adaptation to Climate Change project of the Major Collaborative Research Initiatives Social Sciences and Humanities Research Council of Canada and the “Centro de Estudios Avanzados en Zonas Aridas” (CEAZA) in Chile. The authors thank the Chilean Weather Service (DMC) for making available the precipitation data and the Chilean National Water Management Institution (DGA) for making the river discharge data available.

Supplementary material

10584_2011_200_MOESM1_ESM.pdf (19 kb)
ESM 1 (PDF 19 kb)
10584_2011_200_MOESM2_ESM.pdf (126 kb)
ESM 2 (PDF 125 kb)
10584_2011_200_MOESM3_ESM.pdf (18 kb)
ESM 3 (PDF 18 kb)
10584_2011_200_MOESM4_ESM.pdf (358 kb)
ESM 4 (PDF 357 kb)


  1. Aceituno P, Garreaud R (1995) The impact of the ENSO phenomenon in the rainfall regime along the Andes cordillera (in Spanish). Rev Chilena Ing Hidraulica 2:33–43Google Scholar
  2. Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675CrossRefGoogle Scholar
  3. Canadian Centre for Climate Modelling and Analysis (CCCma) (2005)
  4. Carrasco J, Casassa G, Quintana J (2005) Changes of the 0°C isotherm and the equilibrium line altitude in central Chile during the last quarter of the 20th century. Hydrolog Sci J-des Sciences Hydrologiques 50(6):933–948Google Scholar
  5. CONAMA (2007) Resumen Ejecutivo Proyecto: “Estudio de la Variabilidad Climática en Chile para el siglo XXI”; Cited May 28, 2011
  6. DGA (1991) Análisis Estadístico de Caudales en los Ríos de Chile. Ministerio de Obras Públicas, Dirección General de Aguas, Departamento de Hidrología, Volumen II, Santiago, 1991Google Scholar
  7. Diaz HP, Jaffe J, Stirling R (2003) Farm communities at the crossroads: challenge and resistance. Canadian Plains Research Centre, Regina, Saskatchewan, 353 pGoogle Scholar
  8. Downing TE, Santibáñez F, Romero H, Peña T, Gwynne RN, Ihl M, Rivera A (1994) Climate change and sustainable development in the Norte Chico, Chile: Climate, water resources and agriculture. Environmental Change Unit, Univ. Oxford and School of Geography, Univ. BirminghamGoogle Scholar
  9. El-Hadi M, Al-Habash K (1995) Heat requirements of annual cycle growth of certain cultivars of grape (Vitis vinifera L.). Acta Horticulturae 388:59–63Google Scholar
  10. Falvey M, Garreaud RD (2009) Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res 114:D04102. doi: 10.1029/2008JD010519 CrossRefGoogle Scholar
  11. Favier V, Falvey M, Rabatel A, Praderio E, López D (2009) Interpreting discrepancies between discharge and precipitation in high-altitude area of Chile’s Norte Chico region (26–32°S). Water Resour Res 45:W02424. doi: 10.1029/2008WR006802 CrossRefGoogle Scholar
  12. Ferrini F, Mattii GB, Nicese FP (1995) Effect of temperature on key physiological responses of grapevine leaf. Am J Enol Vitic 46(3):375–379Google Scholar
  13. Giese BS, Urizar SC, Fuckar NS (2002) The Southern Hemisphere origins of the 1976 climate shift. Geophys Res Lett 29:1–4CrossRefGoogle Scholar
  14. Giorgi F, Hewitson B, Christensen JH, Hulme M, von Storch H, Whetton P, Jones R, Mearns LO, Fu C, Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaoxu D (2001) Regional Climate Information—Evaluation and Projections. In: Chapter 10 of Climate Change 2001; The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, pp 583–638Google Scholar
  15. Hewitson B, Crane R (1996) Climate downscaling: techniques and application. Climate Res 7:85–95CrossRefGoogle Scholar
  16. Intergovernmental Panel on Climate Change IPCC (2007) In Climate Change 2007: Impacts, Adaptation and Vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  17. Jackson DJ, Lombard PB (1993) Environmental and management practices affecting grape composition and vine quality: a review. Am J Enol Vitic 44(4):409–430Google Scholar
  18. Jimenez J, Sotes V (1995) Phenological developmet of Vitis vinifera L. in Castilla—La Mancha (Spain). Study of 21 cultivars (10 red and 11 white cultivars). Acta Horticulturae 388:105–110Google Scholar
  19. Kalthoff N, Fiebig-Wittmaack M, Meißner C, Kohler M, Uriarte M, Bischoff-Gauß I, Gonzalez E (2006) The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes. J Arid Environ 65:420–443CrossRefGoogle Scholar
  20. Khodayar S, Kalthoff N, Fiebig-Wittmaack M, Kohler M (2008) Evolution of the atmospheric boundary layer structure of an arid Andes valley. Meteorol Atmos Phys 99:181–198CrossRefGoogle Scholar
  21. Miller A (1976) The Climate of Chile. In: Schwerdtfeger W (ed) World survey of climatology, vol 12. Climates of Central and South America. Elsevier Scientific Publ, Amsterdam, pp 113–145Google Scholar
  22. Minetti JL, Vargas WM, Poblete AG, Acuña LR, Casagrande G (2003) Non-linear trends and low frequency oscillations in annual precipitation over Argentina and Chile, 1931–1999. Atmosfera 16:119–135Google Scholar
  23. Montse N, Arola L (1995) Effects of limited irrigation on the composition of must and wine of Cabernet Sauvignon under semi-arid conditions. Vitis 34(3):151–154Google Scholar
  24. Nakicenovic N, Swart R (eds) (2000) Emissions scenarios IPCC 2001 Special Reports. Cambridge University Press, UK, pp 570Google Scholar
  25. Novoa JE, Castillo R, Viada JM (1996) Tendencia de cambio climático mediante análisis de caudales naturales: Cuenca del río Claro (Chile Semiárido). Anales de la Sociedad Chilena de Ciencias Geográficas. Universidad de La Serena, La Serena, pp 47–56Google Scholar
  26. Olivares S, Squeo F (1999) Patrones fenológicos en especies arbustivas del desierto costero del norte-centro de Chile (Phenological stock in shrub species of the coastal desert of northcentral Chile). Rev Chil Hist Nat 72:353–370Google Scholar
  27. Quintana J (2004) Estudio de los factores que explican la variabilidad de la precipitación en Chile en escala de tiempo interdecadal (Factors envolved in the interdecadal precipitation variability in Chile). M.Sc. Thesis, Department of Geophysics, Universidad de Chile, Santiago, ChileGoogle Scholar
  28. Rosenblüth B, Fuenzalida H, Aceituno P (1997) Recent temperature variations in southern South America. Int J Climatol 17:67–85CrossRefGoogle Scholar
  29. Semenov M, Barrow E (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim Chang 35:397–414CrossRefGoogle Scholar
  30. Semenov M, Barrow E (2002) LARS-WG-A stochastic weather generator for use in climate impact studies, Version 3.0 User ManualGoogle Scholar
  31. Souvignet M (2007) Climate change impacts on water availability in the Semiarid Elqui Valley, Chile. MSc Thesis, Cologne University of Applied Sciences, Cologne, GermanyGoogle Scholar
  32. Strauch G, Oyarzun J, Fiebig-Wittmaack M, González E, Weise SM (2006) Contributions of the different water sources to the Elqui river (northern Chile) runoff evaluated by H/O isotopes. Isot Environ Heal Stud 42(3):1–20Google Scholar
  33. Vargas R, Rodríguez H (2008) Dinámica de poblaciones. p. 99–105. In: Ripa R, Larral P (eds) Manejo de plagas en paltos y cítricos. Instituto de Investigaciones Agropecuarias. Colección Libros INIA-N°23Google Scholar
  34. Von Storch H (1995) Inconsistencies at the interface of climate impact studies and global climate research. Meteor Z 4 NF:72–80Google Scholar
  35. Von Storch H, Güss S, Heimann M (1999) Das Klimasystem und seine Modellierung. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  36. Vuille M, Milana J-P (2007) High-latitude forcing of regional aridification along the subtropical west coast of South America. Geophys Res Lett 34:L23703. doi: 10.1029/2007GL031899 CrossRefGoogle Scholar
  37. Weischet W (1996) Regionale Klimatologie, Teil 1. Die Neue Welt: Amerika, Neuseeland, Australien. Teubner, StuttgartGoogle Scholar
  38. Wittrock V, Wheaton E, Kulshreshtha S (2005) Climate change, ecosystem and water resources: Modeling and impact scenarios for the South Saskatchewan River Basin, Canada: A Working Paper. IACC Project Working Paper N° 25. Cited May 28, 2011

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Melitta Fiebig-Wittmaack
    • 1
    • 2
  • Orlando Astudillo
    • 2
  • Elaine Wheaton
    • 3
  • Virginia Wittrock
    • 4
  • César Perez
    • 5
  • Antonio Ibacache
    • 6
    • 2
  1. 1.Departamento de MatemáticaUniversidad de La SerenaLa SerenaChile
  2. 2.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)La SerenaChile
  3. 3.Saskatchewan Research Council and University of SaskatchewanSaskatoonCanada
  4. 4.Saskatchewan Research CouncilSaskatoonCanada
  5. 5.Prairie Adaptation Research Collaborative (PARC)ReginaCanada
  6. 6.Instituto de Investigaciones Agropecuarias (INIA)La SerenaChile

Personalised recommendations