Climatic Change

, Volume 109, Issue 3–4, pp 647–669 | Cite as

Ungulate herbivory modifies the effects of climate change on mountain forests

  • M. Didion
  • A. D. Kupferschmid
  • A. Wolf
  • H. Bugmann
Open Access


Recent temperature observations suggest a general warming trend that may be causing the range of tree species to shift to higher latitudes and altitudes. Since biotic interactions such as herbivory can change tree species composition, it is important to understand their contribution to vegetation changes triggered by climate change. To investigate the response of forests to climate change and herbivory by wild ungulates, we used the forest gap model ForClim v2.9.6 and simulated forest development in three climatically different valleys in the Swiss Alps. We used altitudinal transects on contrasting slopes covering a wide range of forest types from the cold (upper) to the dry (lower) treeline. This allowed us to investigate (1) altitudinal range shifts in response to climate change, (2) the consequences for tree species composition, and (3) the combined effect of climate change and ungulate herbivory. We found that ungulate herbivory changed species composition and that both basal area and stem numbers decreased with increasing herbivory intensity. Tree species responded differently to the change in climate, and their ranges did not change concurrently, thus causing a succession to new stand types. While climate change partially compensated for the reductions in basal area caused by ungulate herbivory, the combined effect of these two agents on the mix of the dominant species and forest type was non-compensatory, as browsing selectively excluded species from establishing or reaching dominance and altered competition patterns, particularly for light. We conclude that there is an urgent need for adaptive forest management strategies that address the joint effects of climate change and ungulate herbivory.


Basal Area Valley Bottom Swiss Federal Institute Didion Stem Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aas G, Friedrich K (1991) Untersuchungen zur morphologischen Unterscheidung von Stiel- und Traubeneichen. Forest Research 110:349–357CrossRefGoogle Scholar
  2. Ammer C (1996) Impact of ungulates on structure and dynamics of natural regeneration of mixed mountain forests in the Bavarian Alps. Forest Ecology and Management 88(1–2):43–53. doi: 10.1016/S0378-1127(96)03808-X CrossRefGoogle Scholar
  3. Augustine DJ, McNaughton SJ (1998) Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. J Wildl Manage 62(4):1165–1183CrossRefGoogle Scholar
  4. Bigler C, Bräker O, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosystems 9(3):330–343. doi: 10.1007/s10021-005-0126-2 CrossRefGoogle Scholar
  5. Brang P, Schönenberger W, Ott E, Garner B (2001) Forests as protection from natural hazards. In: Evans J (ed) The Forests Handbook, vol. 2. Blackwell, Oxford, pp 53–81. doi: 10.1002/9780470757079.ch3 CrossRefGoogle Scholar
  6. Brassel P, Brändli U-B (1999) Schweizerisches Landesforstinventar: Ergebnisse der Zweitaufnahme 1993–1995. Paul Haupt, BernGoogle Scholar
  7. Bugmann H (1994) On the ecology of mountainous forests in a changing climate: a simulation study. PhD Thesis No. 10638, Swiss Federal Institute of Technology (ETHZ), Zürich.
  8. Bugmann HKM (1996) A simplified forest model to study species composition along climate gradients. Ecology 77:2055–2074CrossRefGoogle Scholar
  9. Bugmann H (2003) Predicting the ecosystem effects of climate change. In: Canham CD, Lauenroth WK, Cole JS (eds) Models in ecosystem science. Princeton University Press, Princeton, pp 385–409Google Scholar
  10. Bugmann HKM, Solomon AM (2000) Explaining forest composition and biomass across multiple biogeographical regions. Ecol Appl 10:95–114CrossRefGoogle Scholar
  11. Cairns DM, Moen J (2004) Herbivory influences tree lines. J Ecol 92(6):1019–1024. doi: 10.1111/j.1365-2745.2004.00945.x CrossRefGoogle Scholar
  12. Cairns D, Lafon C, Moen J, Young A (2007) Influences of animal activity on treeline position and pattern: implications for treeline responses to climate change. Phys Geogr 28 (5):419–433. doi: 10.2747/0272-3646.28.5.419 CrossRefGoogle Scholar
  13. Chauchard S, Beilhe F, Denis N, Carcaillet C (2010) An increase in the upper tree-limit of silver fir (Abies alba Mill.) in the Alps since the mid-20th century: A land-use change phenomenon. For Ecol Manag 259(8):1406–1415. doi: 10.1016/j.foreco.2010.01.009 CrossRefGoogle Scholar
  14. Côté SD, Rooney TP, Tremblay J-P, Dussault C, Waller DM (2004) Ecological impacts of deer overabundance. Ann Rev Ecolog Syst 35:113–147CrossRefGoogle Scholar
  15. Davis MB (2001) Past and future forest response to rapid climate change. In: Schulze E-D, Heimann M, Harrison S et al. (eds) Global biogeochemical cycles in the climate system. Academic, San Diego, pp 167–175Google Scholar
  16. Davis MB, Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292(5517):673–679. doi: 10.1126/science.292.5517.673 CrossRefGoogle Scholar
  17. Didion M (2009) The role of changes in regeneration dynamics for tree species composition and diameter structure in forests. PhD Thesis No. 18398, Swiss Federal Institute of Technology (ETHZ), Zürich.
  18. Didion M, Kupferschmid AD, Bugmann H (2009a) Effects of ungulate browsing on forest composition and structure—a model sensitivity analysis. For Ecol Manag 258S:S44–S55. doi: 10.1016/j.foreco.2009.06.006 CrossRefGoogle Scholar
  19. Didion M, Kupferschmid AD, Lexer MJ, Rammer W, Seidl R, Bugmann H (2009b) Potentials and limitations of using large-scale forest inventory data for evaluating forest succession models. Ecol Model 220:133–147. doi: 10.1016/j.ecolmodel.2008.09.021 CrossRefGoogle Scholar
  20. Didion M, Kupferschmid AD, Zingg A, Fahse L, Bugmann H (2009c) Gaining local accuracy while not losing generality—extending the range of gap model applications. Can J For Res 39:1092–1107. doi: 10.1139/X09-041 CrossRefGoogle Scholar
  21. Dorren LKA, Berger F, Imeson AC, Maier B, Rey F (2004) Integrity, stability and management of protection forests in the European Alps. For Ecol Manag 195:165–176CrossRefGoogle Scholar
  22. EAFV (Eidgenössische Anstalt für das forstliche Versuchswesen), BFL (Bundesamt für Forstwesen und Landschaftsschutz) (eds) (1988) Schweizerisches Landesforstinventar: Ergebnisse der Erstaufnahme 1982–1986. Ber. Eidgenöss. Forsch. Anst. Wald Schnee Landsch. 305. Eidg. Anstalt für das forstliche Versuchswesen, BirmensdorfGoogle Scholar
  23. Eiberle K, Nigg H (1987) Grundlagen zur Beurteilung des Wildverbisses im Gebirgswald. Schweizerische Zeitschrift für Forstwesen 138:747–785Google Scholar
  24. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5th edn. Ulmer, StuttgartGoogle Scholar
  25. Frehner M, Wasser B, Schwitter R (2005) Nachhaltigkeit und Erfolgskontrolle im Schutzwald - Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfunktion. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), BernGoogle Scholar
  26. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18 (4):571–582. doi: 10.1658/1100-9233(2007)18[571:TLSITS]2.0.CO;2 CrossRefGoogle Scholar
  27. Giesecke T, Miller PA, Sykes MT, Ojala AEK, Seppä H, Bradshaw RHW (2010) The effect of past changes in inter-annual temperature variability on tree distribution limits. J Biogeogr 37(7):1394–1405. doi: 10.1111/j.1365-2699.2010.02296.x CrossRefGoogle Scholar
  28. Gobet E, Tinner W, Hubschmid P, Jansen I, Wehrli M, Ammann B, Wick L (2000) Influence of human impact and bedrock differences on the vegetational history of the Insubrian Southern Alps. Veg Hist Archaeobot 9(3):175–187. doi: 10.1007/BF01299802 CrossRefGoogle Scholar
  29. Gödickemeier I (1998) Analyse des vegetationsmusters eines zentralalpinen Bergwaldgebiets. PhD Thesis No. 12641, Swiss Federal Institute of Technology (ETHZ), Zürich;
  30. Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90(4):537–544CrossRefGoogle Scholar
  31. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecology Letters 8(5):461–467. doi: 10.1111/j.1461-0248.2005.00739.x CrossRefGoogle Scholar
  32. Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts (ENSEMBLES). Eos 85(52). doi: 10.1029/2004EO520005
  33. Intergovernmental Panel on Climate Change (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change [Core writing team, Pachauri, RK and Reisinger, A (eds)]. IPCC, Geneva, SwitzerlandGoogle Scholar
  34. Kienast F, Fritschi J, Bissegger M, Abderhalden W (1999) Modeling successional patterns of high-elevation forests under changing herbivore pressure—responses at the landscape level. For Ecol Manag 120:35–46CrossRefGoogle Scholar
  35. Kullman L (2001) 20th century climate warming and tree-limit rise in the Southern Scandes of Sweden. AMBIO 30(2):72–80Google Scholar
  36. Lexer MJ, Hönninger K, Scheifinger H, Matulla C, Grollb N, Kromp-Kolb H, Schadauer K, Starlinger F, Englisch M (2002) The sensitivity of Austrian forests to scenarios of climatic change: a large-scale risk assessment based on a modified gap model and forest inventory data. For Ecol Manag 162:53–72CrossRefGoogle Scholar
  37. Lock S, Pahlmann S, Weber P, Rigling A (2003) Nach Stalden kehren die Flaumeichen zurück. Wald und Holz 9:29–33Google Scholar
  38. McCarty JP (2001) Ecological consequences of recent climate change. J Soc Conserv Biol 15(2):320–331. doi: 10.1046/j.1523-1739.2001.015002320.x CrossRefGoogle Scholar
  39. Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151. doi: 10.1890/06-1715.1 CrossRefGoogle Scholar
  40. Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-being: Synthesis. Island Press, WashingtonGoogle Scholar
  41. Moen J, Aune K, Edenius L, Angerbjörn A (2004) Potential effects of climate change on treeline position in the Swedish mountains. Ecology and Society 9(1):16. (online URL: http://www.ecologyandsocietyorg/vol9/iss1/art16/)Google Scholar
  42. Motta R, Morales M, Nola P (2006) Human land-use, forest dynamics and tree growth at the treeline in the Western Italian Alps. Ann For Sci 63(7):739–747. doi: 10.1051/forest:2006055 CrossRefGoogle Scholar
  43. Ott E, Frehner M, Frey H-U, Lüscher P (1997) Gebirgsnadelwälder - Ein praxisorientierter Leitfaden für eine standortgerechte Waldbehandlung. Verlag Paul Haupt, BernGoogle Scholar
  44. Payette S, Delwaide A (2003) Shift of conifer boreal forest to lichen–heath parkland caused by successive stand disturbances. Ecosystems 6:540–550CrossRefGoogle Scholar
  45. Pertoldi C, Bach LA (2007) Evolutionary aspects of climate-induced changes and the need for multidisciplinarity. J Therm Biol 32(3):118–124. doi: 10.1016/j.jtherbio.2007.01.011 CrossRefGoogle Scholar
  46. Price DT, Zimmermann NE, van der Meer PJ, Lexer MJ, Leadley P, Jorritsma ITM, Schaber J, Clark DF, Lasch P, McNulty S, Wu J, Smith B (2001) Regeneration in gap models: priority issues for studying forest responses to climate change. Clim Change 51:475–508CrossRefGoogle Scholar
  47. Risch AC, Heiri C, Bugmann H (2005) Simulating structural forest patterns with a forest gap model: a model evaluation. Ecol Model 181:161–172CrossRefGoogle Scholar
  48. Rooney TP, Waller DM (2003) Direct and indirect effects of white-tailed deer in forest ecosystems. For Ecol Manag 181:165–176CrossRefGoogle Scholar
  49. Rossell Jr. CR, Gorsira B, Patch S (2005) Effects of white-tailed deer on vegetation structure and woody seedling composition in three forest types on the Piedmont Plateau. For Ecol Manag 210:415–424CrossRefGoogle Scholar
  50. Senn J, Suter W (2003) Ungulate browsing on silver fir (Abies alba) in the Swiss Alps: beliefs in search of supporting data. For Ecol Manag 181:151–164CrossRefGoogle Scholar
  51. Shao G, Bugmann H, Yan X (2001) A comparative analysis of the structure and behavior of three forest gap models at sites in northeastern China. Clim Change 51:389–413CrossRefGoogle Scholar
  52. Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50(1):77–109. doi: 10.1023/A:1010632015572 CrossRefGoogle Scholar
  53. Thornton PE, Running SW, White MA (1997) Generating surfaces of daily meterological variables over large regions of complex terrain. J Hydrol 190:214–251CrossRefGoogle Scholar
  54. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America 102(23):8245–8250. doi: 10.1073/pnas.0409902102 CrossRefGoogle Scholar
  55. Tremblay J-P, Huot J, Potvin F (2007) Density-related effects of deer browsing on the regeneration dynamics of boreal forests. J Appl Ecol 44 (3):552–562. doi: 10.1111/j.1365–2664.2007.01290.x CrossRefGoogle Scholar
  56. Vavra M, Parks CG, Wisdom MJ (2007) Biodiversity, exotic plant species, and herbivory: the good, the bad, and the ungulate. For Ecol Manag 246:66–72CrossRefGoogle Scholar
  57. Wallentin G, Tappeiner U, Strobl J, Tasser E (2008) Understanding alpine tree line dynamics: an individual-based model. Ecol Model 213(3–4):235–246. doi: 10.1016/j.ecolmodel.2008.07.005 CrossRefGoogle Scholar
  58. Walther GR, Post E, Convey P (2002) Ecological responses to recent climate change. Nature 416(28):389–395CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • M. Didion
    • 1
  • A. D. Kupferschmid
    • 1
  • A. Wolf
    • 1
  • H. Bugmann
    • 1
  1. 1.Forest Ecology, Institute of Terrestrial Ecosystems, Department of Environmental SciencesSwiss Federal Institute of Technology ETHZurichSwitzerland

Personalised recommendations