Skip to main content

Advertisement

Log in

Increasing impacts of climate change upon ecosystems with increasing global mean temperature rise

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

In a meta-analysis we integrate peer-reviewed studies that provide quantified estimates of future projected ecosystem changes related to quantified projected local or global climate changes. In an advance on previous analyses, we reference all studies to a common pre-industrial base-line for temperature, employing up-scaling techniques where necessary, detailing how impacts have been projected on every continent, in the oceans, and for the globe, for a wide range of ecosystem types and taxa. Dramatic and substantive projected increases of climate change impacts upon ecosystems are revealed with increasing annual global mean temperature rise above the pre-industrial mean (ΔTg). Substantial negative impacts are commonly projected as ΔTg reaches and exceeds 2°C, especially in biodiversity hotspots. Compliance with the ultimate objective of the United Nations Framework Convention on Climate Change (Article 2) requires that greenhouse gas concentrations be stabilized within a time frame “sufficient to allow ecosystems to adapt naturally to climate change”. Unless ΔTg is constrained to below 2°C at most, results here imply that it will be difficult to achieve compliance. This underscores the need to limit greenhouse gas emissions by accelerating mitigation efforts and by protecting existing ecosystems from greenhouse-gas producing land use change processes such as deforestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytol 165:351–371

    Google Scholar 

  • Araujo MB, Whittaker RJ, Ladle RJ et al (2005) Reducing uncertaintiy in projections of extinction risk from climate change. Glob Ecol Biogeogr 14:529–538

    Google Scholar 

  • Arnell NW, Livermore MJL, Kovats S et al (2004) Climate and socio-economic scenarios for global-scale climate change impacts assessments: characterising the SRES storylines. Glob Environ Change 14:3–20

    Google Scholar 

  • Arzel O, Fichefet T, Goose H (2006) Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Model 12:401–415

    Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E et al (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–104

    Google Scholar 

  • Bakkenes M, Alkemade JRM, Ihle F et al (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob Chang Biol 8:390–407

    Google Scholar 

  • Beaumont LJ, Hughes L (2002) Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change. Glob Chang Biol 8:954–971

    Google Scholar 

  • Benning TL, Lapointe D, Atkinson CT et al (2002) Interactions of climate change with biological invasions and land use in the Hawaiian Islands: modeling the fate of endemic birds using a geographic information system. Proc Natl Acad Sci U S A 99:14246–14249

    Google Scholar 

  • Berry PM, Harrison PA, Dawson TP et al (2005) Modelling natural resource responses to climate change (MONARCH): a local approach. UKCIP Technical Report, UK Climate Impacts Programme, Oxford, p 24

  • Bond WJ, Midgley GF, Woodward FI (2003) The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Glob Chang Biol 9:973–982

    Google Scholar 

  • Bosch J, Carrascal LM, Duran L et al (2006) Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain—is there a link? Proc R Soc B Biol Sci 274:253–260

    Google Scholar 

  • Bowman DMJS, Walsh A, Milne DJ (2001) Forest expansion and grassland contraction within aEucalyptus savanna matrix between 1941 and 1994 at Litchfield National Park in the Australian monsoon tropics. Glob Ecol Biogeogr 10:535–548

    Google Scholar 

  • Broennimann O, Thuiller W, Hughes G et al (2006) Do geographic distribution, niche property and life form explain plants’ vulnerability to global change? Glob Chang Biol 12:1079–1093

    Google Scholar 

  • Brooker RW, Travis JMJ, Clark EJ et al (2007) Modelling species’ range shifts in a changing climate: the impacts of biotic interactions, dispersal distance and the rate of climate change. J Theor Biol 245:59–65

    Google Scholar 

  • Buckley LB, Roughgarden J (2004) Effects of changes in climate and land use. Nature 430:34

    Google Scholar 

  • Burkett VR, Wilcox DA, Stottlemyer R et al (2005) Nonlinear dynamics in ecosystem response to climatic change: case studies and policy implications. Ecol Complexity 2:357–394

    Google Scholar 

  • Chapin FS, Sturm M, Serreze MC et al (2005) Role of land-surface changes in arctic summer warming. Science 310(5748):657–660

    Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, p 847

    Google Scholar 

  • Cox PM, Betts RA, Jones CD et al (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Google Scholar 

  • Cox PM, Betts RA, Collins M et al (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol 78:137–156

    Google Scholar 

  • Cramer W, Bondeau A, Woodward FI et al (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Chang Biol 7:357–373

    Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679

    Google Scholar 

  • Den Elzen M, Meinshausen M (2006) Multi-gas emission pathways for meeting the EU 2°C climate target. In: Schellnhuber HJ, Cramer W, Nakicenovich N et al (eds) Avoiding dangerous climate change. Cambridge University Press, Cambridge, p 299

    Google Scholar 

  • Durance I, Ormerod SJ (2007) Climate change effects on upland stream macro-invertebrates over a 25-year period. Glob Chang Biol 13:942–957

    Google Scholar 

  • Eliot I, Finlayson CM, Waterman P (1999) Predicted climate change, sea-level rise and wetland management in the Australian wet–dry tropics. Wetlands Ecol Manag 7:63–81

    Google Scholar 

  • Erasmus BFN, Van Jaarsveld AS, Chown SL et al (2002) Vulnerability of South African animal taxa to climate change. Glob Chang Biol 8:679–693

    Google Scholar 

  • European Climate Forum (2004) What is dangerous climate change? In: Initial results of a symposium on key vulnerable regions climate change and article 2 of the UNFCCC. International Symposium, Beijing, India, 27–30 October, ECF: European Climate Forum, Buenos Aires, Argentina

  • Feeley KJ, Joseph Wright S, Nur Supardi MN et al (2007) Decelerating growth in tropical forest trees. Ecol Lett 10:461–469

    Google Scholar 

  • Fischlin A, Gyalistras D (1997) Assessing impacts of climatic change on forests in the Alps. Glob Ecol Biogeogr Lett 6(1):19–37

    Google Scholar 

  • Fischlin A, Midgley GF, Price JT et al (2007) Ecosystems, their properties, goods and services. In: Parry ML, Canziani OF, Palutikof JP et al (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel of climate change (IPCC). Cambridge University Press, Cambridge, pp 211–272

    Google Scholar 

  • Fitzpatrick MC, Gove AD, Sanders NJ et al (2008) Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Glob Chang Biol 14:1337–1352

    Google Scholar 

  • Foden W, Midgley GF, Hughes G et al (2007) A changing climate is eroding the geographical range of the Namib desert tree Aloe through population declines and dispersal lags. Divers Distrib 13:645–653. doi:10.1111/j.1472-4642.2007.00391.x

    Google Scholar 

  • Folkestad T (2005) Evidence and implications of dangerous climate change in the Arctic. In: Schellnhuber HJ, Cramer W, Nakicenovich N, Wigley T, Yohe G (eds) Avoiding dangerous climate change. Cambridge University Press, Cambridge, p 215

    Google Scholar 

  • Forcada J, Trathan PN, Reid K et al (2006) Contrasting population changes in sympatric penguin species in association with climate warming. Glob Chang Biol 12:411–423

    Google Scholar 

  • Fuhrer J, Beniston M, Fischlin A et al (2006) Climate risks and their impact on agriculture and forests in Switzerland. Clim Change 79:79–102

    Google Scholar 

  • Galbraith H, Jones R, Park R et al (2002) Global climate change and sea level rise: potential losses of intertidal habitat for shorebirds. Waterbirds 25:173–183

    Google Scholar 

  • Gitay H, Brown S, Easterling W et al (2001) Ecosystems and their goods and services. In: McCarthy JJ, Canziani OF, Leary NA et al (eds) Climate change 2001: impacts, adaptation and vulnerability. Cambridge University Press, UK

  • Granados J, Körner C (2002) In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Glob Chang Biol 8:1109–1117

    Google Scholar 

  • Gyalistras D, Fischlin A (1999) Towards a general method to construct regional climatic scenarios for model-based impacts assessments. Petermanns Geogr Mitt 143:251–264

    Google Scholar 

  • Gyalistras D, von Storch H, Fischlin A et al (1994) Linking GCM-simulated climatic changes to ecosystem models: case studies of statistical downscaling in the Alps. Clim Res 4:167–189

    Google Scholar 

  • Halloy SRP, Mark AF (2003) Climate-change effects on alpine plant biodiversity: a New Zealand perspective on quantifying the threat. Arct Antarct Alp Res 35:248–254

    Google Scholar 

  • Hannah L, Midgley GF, Lovejoy T et al (2002) Conservation of biodiversity in a changing climate. Conserv Biol 16:264–268

    Google Scholar 

  • Hare W (2006) Relationship between global mean temperature and impacts on ecosystems, food production, water and socioeconomic systems. In: Schellnhuber HJ, Cramer W, Nakicenovich N, Wigley T, Yohe G (eds) Avoiding dangerous climate change. Cambridge University Press, Cambridge, p 177

    Google Scholar 

  • Harte J, Ostling A, Green JL et al (2004) Climate change and extinction risk. Nature 430:36

    Google Scholar 

  • Haugan PM, Turley C, Poertner HO (2006) Effects on the marine environment of ocean acidification resulting from elevated levels of CO2 in the atmosphere. In: Biodiversity Series 285/2006 DN-utredning 2006-1, OSPAR commission convention for the protection of the marine environment of the North-East Atlantic (the “OSPAR convention”), London, UK, pp 1–36

  • Hawkes LA, Broderick AC, Godfrey MH et al (2007) Investigating the potential impacts of climate change on a marine turtle population. Glob Chang Biol 13:923–932

    Google Scholar 

  • Hilbert DW, Bradford M, Parker T et al (2004) Golden bowerbird (Prionodura newtonia) habitat in past, present and future climates: predicted extinction of a vertebrate in tropical highlands due to global warming. Biol Conserv 116:367–377

    Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Google Scholar 

  • Holmgren M, Scheffer M, Ezcurra E et al (2001) El Nino effects on the dynamics of terrestrial ecosystems. Trends Ecol Evol 16:89–94

    Google Scholar 

  • Houghton JT, Jenkins GJ, Ephraums JJ (eds) (1990) Scientific assessment of climate change. Report prepared for IPCC by working group I. Cambridge University Press, Cambridge

    Google Scholar 

  • Houghton JT, Meira Filho LG, Callander BA et al (eds) (1996) Climate change 1995: the science of climate change. Contribution of working group I to the second assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ et al (eds) (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Hughes L, Cawsey EM, Westoby M (1996) Climatic range sizes of eucalyptus species in relation to future climate change. Glob Ecol Biogeogr Lett 5:23–29

    Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Google Scholar 

  • Hulme M, Mitchell J, Ingram W et al (1999) Climate change scenarios for global impacts studies. Glob Environ Change 9:S3–S19

    Google Scholar 

  • Hulme M, Jenkins GJ, Lu X et al (2002) Climate change scenarios for the United Kingdom. The UKCIP02 scientific report. Tyndall centre for climate change research, school of environmental sciences, University of East Anglia, Norwich, UK, p 120

  • Huntley B, Collingham YC, Green RE et al (2006) Potential impacts of climatic change upon geographical distributions of birds. Ibis 148(s1):8–28

    Google Scholar 

  • Huntley B, Collingham YC, Willis GW et al (2008) Potential impacts of climate change upon European breeding birds. PLoS ONE 1:e1439. doi:10.1371/journal.pone.0001439

    Google Scholar 

  • IPCC (2001) In: Houghton JT, Ding Y, Griggs DG et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, UK

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, pp 1–18

  • Jetz W, Wilcove DS, Dobson AP (2008) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5(6):e157. doi:10.1371/journal.pbio.0050157

    Google Scholar 

  • Johnson WC, Millett BV, Gilmanov T et al (2005) Vulnerability of northern prairie wetlands to climate change. Bioscience 55:863–872

    Google Scholar 

  • Kaplan JO, Bigelow NH, Prentice IC et al (2003) Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J Geophys Res 108:8171–8200. doi:10.1029/2002JD002559

    Google Scholar 

  • Kattenberg A, Giorgi F, Grassl H et al (1996) Climate models—projections of future climate. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A Maskell K (eds) Climate change 1995—the science of climate change contribution of working group I to the second assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 289–357

    Google Scholar 

  • Kerr J, Packer L (1998) The impact of climate change on mammal diversity in Canada. Environ Monit Assess 49:263–270

    Google Scholar 

  • Kirschbaum M, Fischlin A (1996) Climate change impacts on forests. In: Watson R, Zinyowera MC Moss RH (eds) Climate change 1995—impacts, adaptations and mitigation of climate change: scientific–technical analysis. Contribution of working group II to the second assessment report of the intergovernmental panel of climate change. Cambridge University Press, Cambridge, pp 95–129

    Google Scholar 

  • Kurz WA, Dymond CC, Stinson G et al (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452(7190):987–990

    Google Scholar 

  • Leemans R, Eickhout B (2004) Another reason for concern: regional and global impacts on ecosystems for different levels of climate change. Glob Environ Change 14:219–228

    Google Scholar 

  • Lensing JR, Wise DH (2007) Impact of changes in rainfall amounts predicted by climate-change models on decomposition in a deciduous forest. Appl Soil Ecol 35:523–534

    Google Scholar 

  • Levinsky I, Skov F, Svenning J-C et al (2007) Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodivers Conserv 16:3803–3816

    Google Scholar 

  • Lewis O (2006) Climate change, species–area curves and the extinction crisis. Philos Trans R Soc 361:163–171

    Google Scholar 

  • Lucht W, Schaphoff S, Erbrecht T et al (2006) Terrestrial vegetation redistribution and carbon balance under climate change. Carbon Bal Manag 1:6–7. doi:10.1186/1750068016

    Google Scholar 

  • Malcolm JR, Liu CR, Neilson RP et al (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol 20:538–548

    Google Scholar 

  • Martinez-Meyer E, Peterson AT, Hargrove WW (2004) Ecological niches and stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob Ecol Biogeogr 13:305–314

    Google Scholar 

  • Mastrandrea MD, Schneider SH (2006) Probabalistic assessment of dangerous climate change and emissions scenarios: stakeholder metrics and overshoot pathways. In: Schellnhuber HJ, Cramer W, Nakicenovich N et al (eds) Avoiding dangerous climate change. Cambridge University Press, UK, pp 253–264

    Google Scholar 

  • McClean CJ, Lovett JC, Kuper W et al (2005) African plant diversity and climate change. Ann Mo Bot Gard 92:139–152

    Google Scholar 

  • McDonald KA, Brown JH (1992) Using montane mammals to model extinctions due to global change. Conserv Biol 6:409–415

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD et al (2007) Chapter Global climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, pp 747–845

    Google Scholar 

  • Memmott J, Craze PG, Waser NM et al (2007) Global warming and the disruption of plant–pollinator interactions. Ecol Lett 10:710–717

    Google Scholar 

  • Midgley GF, Thuiller W (2005) Global environmental change and the uncertain fate of biodiversity. New Phytol 167:638–641

    Google Scholar 

  • Midgley GF, Hannah L, Millar D et al (2002) Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob Ecol Biogeogr 11:445–451

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Millennium ecosystem assessment: living beyond our means—natural assets and human well-being (statement from the board). Millennium Ecosystem Assessment, p 28. Available at http://www.millenniumassessment.org/

  • Mitchell JFB, Johns TC, Gregory JM et al (1995) Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature 376:501–504

    Google Scholar 

  • Moriondo M, Good P, Durao R et al (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95

    Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G et al (eds) (2000) Emissions scenarios—a special report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, p 509

    Google Scholar 

  • Najjar RG (2000) The potential impacts of climate change on the mid-Atlantic coastal region. Clim Res 15:160–160

    Google Scholar 

  • Neilson RP, Drapek RJ (1998) Potentially complex biosphere responses to transient global warming. Glob Change Biol 4:505–521

    Google Scholar 

  • Ni J (2001) Carbon storage in terrestrial ecosystems of China: estimates at different spatial resolutions and their responses to climate change. Clim Change 49:339–358

    Google Scholar 

  • Nicholls RJ, Hoozemans FMJ, Marchand M (1999) Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Glob Environ Change 9:69–87

    Google Scholar 

  • Ohlemüller R, Gritt ES, Sykes MT et al (2006) Quantifying components of risk for European woody species under climate change. Glob Change Biol 12:1788–1799

    Google Scholar 

  • O’Neill B, Oppenheimer M (2004) Climate change impacts are sensitive to the stabilisation path. Proc Natl Acad Sci U S A 101:16411–16416

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Google Scholar 

  • Pearson RG (2006) Climate change and the migration capacity of species. Trends Ecol Evol 21:111–113

    Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Google Scholar 

  • Peck LS, Webb KE, Bailey DM (2004) Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct Ecol 18:625–630

    Google Scholar 

  • Peterson AT, Ortega-Huerta MA, Bartley J et al (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629

    Google Scholar 

  • Phillips OL, Martinez RV, Arroyo L et al (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418(6899):770–774

    Google Scholar 

  • Pickering C, Good R, Green K (2004) Potential effects of global warming on the biota of the Australian Alps. Australian Greenhouse Office, Australian Government, Canberra, p 51

    Google Scholar 

  • Pounds JA, Bustamante MR, Coloma LA (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167

    Google Scholar 

  • Preston BL (2006) Risk-based reanalysis of the effects of climate change on US cold-water habitat. Clim Change 76:91–119

    Google Scholar 

  • Price J (2002) Climate change, birds and ecosystems—why should we care? In: Rapport DJ, Lasley WL, Rolston DE et al (eds) Managing for healthy ecosystems. Lewis, Boca Raton, pp 465

    Google Scholar 

  • Price JT, Root TL (2005) Potential impacts of climate change on neotropical migrants: management implications. In: Ralph CJ, Rich TD (eds) Bird conservation implementation and integration in the Americas. USDA Forest Service, Arcata, pp 1123–1128

    Google Scholar 

  • Raper SCB, Gregory JM, Osborn TJ (2001) Use of an upwelling diffusion energy balance climate model to simulate and diagnose A/OGCM results. Clim Dyn 17:601–613

    Google Scholar 

  • Raven J, Caldeira K, Elderfield H et al (2005) Ocean acidification due to increasing atmospheric carbon dioxide. Policy document 12/05, The Royal Society The Clyvedon Press Ltd, Cardiff, UK, p 68

  • Root TL, Price JT, Hall HR et al (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Google Scholar 

  • Rosentrater L (2005) 2° is too much! evidence and implications of dangerous climate change in the Arctic. WWF International Arctic Program, Oslo, p 74

    Google Scholar 

  • Rosenzweig C, Casassa G, Karoly DJ et al (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP et al (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel of Climate Change (IPCC). Cambridge University Press, Cambridge, pp 79–131

    Google Scholar 

  • Rutherford MC, Midgley GF, Bond WJ et al (2000) Plant biodiversity: vulnerability and adaptation assessment. Department of Environmental Affairs and Tourism, Pretoria, p 59

    Google Scholar 

  • Schaphoff S, Lucht W, Gerten D, Sitch S, Cramer W, Prentice IC (2006) Terrestrial biosphere carbon storage under alternative climate projections. Clim Change 74:97–122

    Google Scholar 

  • Schär C, Vidale PL, Lüthi D et al (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Google Scholar 

  • Scholze M, Knorr W, Arnell NW et al (2006) A climate change risk analysis for world ecosystems. Proc Natl Acad Sci U S A 103:13116–13120

    Google Scholar 

  • Sekercioglu CH, Schneider SH, Fay JP et al (2008) Climate change, elevational range shifts, and bird extinctions. Conserv Biol 22:140–150

    Google Scholar 

  • Sheppard CRC (2003) Predicted recurrences of mass coral mortality in the Indian Ocean. Nature 425:294–297

    Google Scholar 

  • Siqueira MF, Peterson AT (2003) Consequences of global climate change for geographic distributions of cerrado tree species. Biota Neotrop 3:1–14

    Google Scholar 

  • Sitch S, Smith B, Prentice IC et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–185

    Google Scholar 

  • Solomon S, Qin D, Manning M et al (eds) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Sorenson LG, Goldberg R, Root TL et al (1998) Potential effects of global warming on waterfowl populations breeding in the Northern Great Plains. Clim Change 40:343–369

    Google Scholar 

  • Still CJ, Foster PN, Schneider SH (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature 398:608–610

    Google Scholar 

  • Symon C, Arris L, Heal B (eds) (2005) Arctic climate impact assessment (ACIA). Cambridge University Press, Cambridge, p 1042

    Google Scholar 

  • Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European alps: a review. Clim Change 50:77–109

    Google Scholar 

  • Theurillat JP, Felber F, Geissler P et al (1998) Sensitivity of plant and soil ecosystems of the Alps to climate change. In: Cebon P, Dahinden U, Davies HC et al (eds) Views from the Alps: regional perspectives on climate change. MIT, Boston, pp 225–308

    Google Scholar 

  • Thomas CD, Williams SE, Cameron A et al (2004a) Extinction risk from climate change. Nature 427:145–148

    Google Scholar 

  • Thomas CD, Williams SE, Cameron A et al (2004b) Biodiversity conservation: uncertainty in predictions of extinction risk/effects of changes in climate and land use/climate change and extinction risk (reply). Nature 430:34

    Google Scholar 

  • Thomas CD, Franco AMA, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416

    Google Scholar 

  • Thuiller W, Araujo MB, Pearson RG et al (2004) Uncertainty in predictions of extinction risk. Nature 430:35

    Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB et al (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci U S A 102:8245–8250

    Google Scholar 

  • Thuiller W, Broenniman O, Hughes G et al (2006) Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob Change Biol 12:424–440

    Google Scholar 

  • van Vliet A, Leemans R (2006) Rapid species’ responses to changes in climate require stringent climate protection targets. In: Schellnhuber HJ, Cramer W, Nakicenovich N et al (eds) Avoiding dangerous climate change. Cambridge University Press, Cambridge, pp 135–141

    Google Scholar 

  • Van Vuuren DP, Sala OE, Pereira HM (2006) The future of vascular plant diversity under four global scenarios. Ecol Soc 11:25–44

    Google Scholar 

  • Villers-Ruiz L, Trejo-Vazquez I (1998) Impacto del cambio climático en los bosques y áreas naturales protegidas de México (Impact of climatic change in forests and natural protected areas of Mexico). Interciencia 23:10–19

    Google Scholar 

  • Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Google Scholar 

  • Warren R (2006) Impacts of global climate change at different annual mean global temperature increases. In: Schellnhuber HJ, Cramer W, Nakicenovich N et al (eds) Avoiding dangerous climate change. Cambridge University Press, Cambridge, pp 93131

    Google Scholar 

  • Williams SE, Bolitho EE, Fox S (2003) Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc R Soc Lond Ser B Biol Sci 270:1887–1892

    Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci U S A 104:5738–5742

    Google Scholar 

  • Xenopoulos MA, Lodge DM, Alcamo J et al (2005) Scenarios of freshwater fish extinctions from climate change and water withdrawal. Glob Change Biol 11:1557–1564

    Google Scholar 

  • Zickfield K, Knopf B, Petoukhov V et al (2005) Is the Indian summer monsoon stable against global change? Geophys Res Lett 32:L15707

    Google Scholar 

  • Zöckler C, Lysenko I (2000) Waterbirds on the edge—first circumpolar assessment of climate change impact on Arctic breeding water birds. WCMC Biodiversity Series No 11, UNEP and World Conservation Monitoring Centre (WCMC), Cambridge, UK, p 27

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Warren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warren, R., Price, J., Fischlin, A. et al. Increasing impacts of climate change upon ecosystems with increasing global mean temperature rise. Climatic Change 106, 141–177 (2011). https://doi.org/10.1007/s10584-010-9923-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-010-9923-5

Keywords

Navigation