Advertisement

Climatic Change

, Volume 98, Issue 3–4, pp 307–329 | Cite as

A Europe–South America network for climate change assessment and impact studies

  • Jean-Philippe Boulanger
  • G. Brasseur
  • Andrea Fabiana Carril
  • Manuel de Castro
  • Nicolas Degallier
  • Carlos Ereño
  • H. Le Treut
  • Jose Antonio Marengo
  • Claudio Guillermo Menendez
  • Mario Nestor Nuñez
  • Olga C. Penalba
  • Alfredo Luis Rolla
  • Matilde Rusticucci
  • Rafael Terra
Article

Abstract

The goal of the CLARIS project was to build an integrated European–South American network dedicated to promote common research strategies to observe and predict climate changes and their consequent socio-economic impacts taking into account the climate and societal peculiarities of South America. Reaching that goal placed the present network as a privileged advisor to contribute to the design of adaptation strategies in a region strongly affected by and dependent on climate variability (e.g. agriculture, health, hydro-electricity). Building the CLARIS network required fulfilling the following three objectives: (1) The first objective of CLARIS was to set up and favour the technical transfer and expertise in earth system and regional climate modelling between Europe and South America together with the providing of a list of climate data (observed and simulated) required for model validations; (2) The second objective of CLARIS was to facilitate the exchange of observed and simulated climate data between the climate research groups and to create a South American high-quality climate database for studies in extreme events and long-term climate trends; (3) Finally, the third objective of CLARIS was to strengthen the communication between climate researchers and stakeholders, and to demonstrate the feasibility of using climate information in the decision-making process.

Keywords

Climate Change Scenario Dengue Fever Southern Annular Mode Regional Climate Change South America 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrera R, Amador M, Clark GG (2006) Use of the pupal index survey technique for measuring Aedes aegypti (Diptera: Culicidae) productivity in Puerto Rico. Am J Trop Med Hyg 74:290–302Google Scholar
  2. Bettolli ML, Penalba OC, Ribalaygua J, Torres Michelena L (2008) Estimación de Valores Diarios de Precipitación y Temperatura en la Cuenca del Plata: Reducción de Escala Estadística. VI Congreso Internacional sobre Cambio Climático Regional y sus Impactos. 8 al 11 de octubre de 2008, Tarragona, EspañaGoogle Scholar
  3. Boulanger JP, Penalba O (2009) Assessment of climate information needs in the Argentinean Agrobusiness sectors. Clim Change (this issue)Google Scholar
  4. Boulanger J-P, Martinez F, Segura EC (2007) Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: precipitation mean state and seasonal cycle in South America. Clim Dyn 28:255–271. doi: 10.1007/s00382-006-0182-0 CrossRefGoogle Scholar
  5. Boulanger J-P, Aizpuru J, Leggieri L, Marino M (2009) A procedure for automated quality control and homogenization of historical daily temperature and precipitation data (APACH). Part 1: quality control and application to the Argentinean Weather Service Stations. Clim Change. doi: 10.1007/s10584-009-9741-9 Google Scholar
  6. Cabre F, Solman S, Nunez M (2009) Creating regional climate change scenarios over Southern South America for the 2020’s and 2050’s using the pattern scaling technique: validity and limitations. doi: 10.1007/s10584-009-9737-5
  7. Carril AF, Scoccimarro E (2006) Training activities on climate variability studies based on MATLAB applications. CLARIS Newsletter, ISSN 1669-3264, Issue 4, pp 15–18Google Scholar
  8. Carril AF, Menéndez CG, Navarra A (2005) Climate response associated with the southern annular mode in the surroundings of Antarctic Peninsula: a multimodel ensemble analysis. Geophys Res Lett 32:L16713. doi: 10.1029/2005GL023581 CrossRefGoogle Scholar
  9. Carvalho LMV, Caldas ED, Degallier N et al (2004) Susceptibility of Aedes aegypti larvae to the insecticide temephos in the Federal District, Brazil. Rev Saúde Pública 38:623-629CrossRefGoogle Scholar
  10. Champredonde M (2001) Stratégie des éleveurs et construction de la qualité dans la filières des viandes bovines. Le cas du Sud_Ouest Pampéen en Argentine. Thèse d’Université Toulouse le Mirail, Formation doctorale “ Etudes Rurales ”, p 351Google Scholar
  11. Chongsuvivatwong V, Thammapalo S, Students G (2000) Social factors associated with container mosquito larva infestation in Phuket Province 1999. In: The first international conference on dengue and dengue haemorrhagic fever, Chiang Mai, Thailand, 20–24 November 2000. Ministry of Public Health, Chiang Mai, Thailand, p 74Google Scholar
  12. Degallier N, Hervé J-P, Travassos da Rosa APA, Sá GC, Filho (1988a) Aedes aegypti (L.): importance de sa bioécologie dans la transmission de la Dengue et des autres arbovirus. Première partie. Bulletin de la Société de Pathologie exotique 81:97–110Google Scholar
  13. Degallier N, Hervé J-P, Travassos da Rosa APA, Sá GC, Filho (1988b) Aedes aegypti (L.): importance de sa bioécologie dans la transmission de la Dengue et des autres arbovirus. Deuxième partie: bibliographie. Bulletin de la Société de Pathologie exotique 81:111–124Google Scholar
  14. Degallier N, Favier C, Menkes C, Lengaigne M, Ramalho WM, Souza R, Servain J, Boulanger J-P (2009) Toward an early warning system for dengue prevention: modeling climate impact on dengue transmision. Clim Change. doi: 10.1007/s10584-009-9747-3 Google Scholar
  15. D’onofrio A, Boulanger J-P, Segura EC (2009) A weather pattern classification system for regional climate downscaling of daily precipitation and temperature. Clim Change, CLARIS (this issue)Google Scholar
  16. D’Orgeval T, Boulanger JB, Capalbo J, Guevara E, Meira S, Penalba O (2009) The value of seasonal climate information for agricultural decision-making in the three CLARIS sites. Clim Change (this issue)Google Scholar
  17. Díaz A, Aceituno P (2003) Atmospheric circulation anomalies during episodes of enhanced and reduced convective cloudiness over Uruguay. J Climate 16:3171–3185CrossRefGoogle Scholar
  18. Favier C, Degallier N, Dubois MA, Boulanger J-P, Menkes CE, Torres L (2005) Dengue epidemic modeling: stakes and pitfalls. Asia Pac Biotech News 9:1191-1194Google Scholar
  19. Favier C, Degallier N, Lima JRC, Rosa-Freitas MG, Luitgards-Moura JF, Mondet B, Oliveira C, Weimann ETdS, Tsouris P (2006a) Early determination of the reproductive number for vector-borne diseases: the case of Dengue in Brazil. Trop Med Int Health 11:332–340CrossRefGoogle Scholar
  20. Favier C, Degallier N, Vilarinhos PdTR, Carvalho LMV, Yoshizawa MAC, Knox MB (2006b) Effects of climate and different management strategies on Aedes aegypti breeding sites: a longitudinal survey in Brasilia (DF, Brazil). Trop Med Int Health 11:1104–1118CrossRefGoogle Scholar
  21. Focks DA, Daniels E, Haile DG, Keesling JE (1995) A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 53(5):489–506Google Scholar
  22. Freitas SR, Longo KM, Silva Dias MAF, Chatfield R, Silva Dias P, Artaxo P, Andreae MO, Grell G, Rodrigues LF, Fazenda A, Panetta J (2009) The coupled aerosol and tracer transport model to the Brazilian developments on the regional atmospheric modeling system (CATT-BRAMS) - Part 1: model description and evaluation. Atmos Chem Phys 9:2843–2861CrossRefGoogle Scholar
  23. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212CrossRefGoogle Scholar
  24. Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10:100–103CrossRefGoogle Scholar
  25. Hales S, Wet Nd, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360:830–834CrossRefGoogle Scholar
  26. Hopp MJ, Foley JA (2003) Worldwide fluctuations in dengue fever cases related to climate variability. Clim Res 25:85–94CrossRefGoogle Scholar
  27. Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18(3–4):235–265. doi: 10.1016/S1161-0301(02)00107-7 CrossRefGoogle Scholar
  28. Leloup J, Lengaigne M, Boulanger J-P (2008) Twentieth century ENSO characteristics in the IPCC database. Clim Dyn 30:277–291. doi: 10.1007/s00382-007-0284-3 CrossRefGoogle Scholar
  29. McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. The Lancet 367:859–869CrossRefGoogle Scholar
  30. Marengo JA (2007) Integrating across spatial and temporal scales in climate projections: Challenges for using RCM projections to develop plausible scenarios for future extreme events in South America for vulnerability and impact studies. IPCC TGICA Expert Meeting on Integrating Analysis of Regional Climate Change and Response Options. Meeting Report: Papers. Nadi, Fiji, 20–22 June 2007, pp 141–147Google Scholar
  31. Marengo J, Ambrizzi T (2006) Use of regional climate models in impacts assessments and adaptations studies from continental to regional and local scales: The CREAS (Regional Climate Change Scenarios for South America) initiative in South America. Proceedings of 8 ICSHMO, Foz do Iguaçu, Brazil, April 24–28, 2006, pp 291–296Google Scholar
  32. Marengo J, Rusticucci M, Penalba O, Renom M (2009) An intercomparison of model-simulated in extreme rainfall and temperature events during the last half of XX century. Part 2: historical trends. Clim Change. doi: 10.1007/s10584-009-9743-7 Google Scholar
  33. Meira S, Guevara E, Donatelli M, Bellochi G, Penalba O, Boulanger JP (2007) Climate change impact assessment on cropping systems. A case of study at three sites of the pampas region. Farming Systems Design Symposium. Sicily, Italu, 10–12 setiembre 2007Google Scholar
  34. Menéndez CG, Carril AF (2005) SAM-related variations in the Antarctic Peninsula from IPCC AR4 models. In Exchanges, Scientific Contributions (CLIVAR), No. 35, vol. 10(4), pp 6–7Google Scholar
  35. Menéndez CG, Carril AF (2006) On the relationship between SAM and frost days as represented by an ensemble of IPCC AR4 models. CLARIS Newsletter, ISSN 1669-3264, Issue 5, pp 21–25Google Scholar
  36. Menéndez CG, Carril AF (2008) Potential changes in extremes and links with the southern annular mode as simulated by a multi-model ensemble. Clim Change, CLARIS (submitted)Google Scholar
  37. Menéndez CG, Sörensson AA, Samuelsson P, Willén U, Hansson U (2007) Simulating soil-precipitation feedbacks in South America. IPCC TGICA Expert Meeting on Integrating Analysis of Regional Climate Change and Response Options. Meeting Report: Papers. Nadi, Fiji, 20–22 June 2007, pp 155–164Google Scholar
  38. Menéndez CG, de Castro M, Boulanger J-P, D’Onofrio A, Sanchez E, Sörensson AA, Blazquez J, Elizalde A, Jacob D, Le Treut H, Li ZX, Núñez MN, Pessacg N, Pfeiffer S, Rojas M, Rolla A, Samuelsson P, Solman SA, Teichmann C (2009) Downscaling extreme month-long anomalies in southern South America. Clim Change (this issue)Google Scholar
  39. Núñez MN, Solman SA, Cabré MF (2008) Regional climate change experiments over southern South America. II: climate change scenarios in the late twenty-first century. Clim Dyn 32:1081–1095. doi: 10.1007/s00382-008-0449-8 CrossRefGoogle Scholar
  40. Otero M, Solari HG, Schweigmann N (2006) A stochastic population dynamics model for Aedes aegypti formulation and application to a city with temperate climate. Bull Math Biol 68:1945–1974CrossRefGoogle Scholar
  41. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317CrossRefGoogle Scholar
  42. Penalba O, Robledo F (2009) Spatial and temporal variability of the frequency of extreme daily rainfall regime in the La Plata basin during the 20th century. Clim Change. doi: 10.1007/s10584-009-9744-6 Google Scholar
  43. Ramalho WM, Santos SM, Siqueira JJB, Barcellos C, Degallier N (2006) Modelling Dengue dynamics in Brazil-selection, organization and analysis of epidemiological, climatic and entomological indicators in a GIS environment. In: 1st OIE international conference - use of GIS in veterinary activities, Silvi Marina (TE), Abruzzo, Italia, 8–11 October 2006Google Scholar
  44. Reiter P (2001) Climate change and mosquito-borne disease. Environ Health Perspect 109:141–161CrossRefGoogle Scholar
  45. Reiter P, Lathrop S, Bunning M, Biggerstaff BJ, Singer D, Tiwari T, Baber L, Amador M, Thirion J, Hayes J, Seca C, Mendez J, Ramirez B, Robinson JG, Rawlings J, Vorndam V, Waterman S, Gubler D, Clark G, Hayes E (2003) Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis 9:86–89Google Scholar
  46. Rusticucci M, Barrucand M (2004) Observed trends and changes in temperature extremes over Argentina. J Climate 17(20):4099–4107CrossRefGoogle Scholar
  47. Rusticucci M, Renom M (2007) Variability and trends in indices of quality controlled daily temperature extremes in Uruguay. Int J Climatol. doi: 10.1002/joc.1607 Google Scholar
  48. Rusticucci M, Marengo J, Penalba O, Renom M (2009) An intercomparison of model-simulated in extreme rainfall and temperature events during the last half of XX century. Part 1: mean values and variability. Clim Change. doi: 10.1007/s10584-009-9742-8 Google Scholar
  49. Scoccimarro E, Carril AF (2006) MATLAB and practical applications on climate variability studies. Educational kit available on-line at “Earth prints repository”. http://hdl.handle.net/2122/1044
  50. Seth A, Rojas M, Rauscher SA (2009) CMIP3 projected changes in the annual cycle of the South American monsoon. Clim Change (this issue)Google Scholar
  51. Silvestri G, Vera C, Jacob D, Pfeifer S, Teichmann C (2009) A high-resolution 43-year atmospheric hindcast for South America generated with the MPI regional model. Clim Dyn 32:693–709CrossRefGoogle Scholar
  52. Sörensson AA, Menéndez CG, Hansson U, Samuelsson P, Willén U (2007) Present and future climate as simulated by Rossby Centre Regional Atmosphere Model (RCA3) forced by ECHAM5-OM over South America. Oral presentation at the CLARIS Final Meeting, La Plata, Argentina, June 2007Google Scholar
  53. Sörensson AA, Menéndez CG, Samuelsson P, Willén U, Hansson U (2009) Soil-precipitation feedbacks during the South American monsoon as simulated by a regional climate model. Clim Change. doi: 10.1007/s10584-009-9740-x Google Scholar
  54. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  55. Vera C, Silvestri G (2009) Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset. Clim Dyn 32:1003–1014CrossRefGoogle Scholar
  56. Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo J, Mechoso CR, Nogues-Paegle J, Silva Dias PL, Zhang C (2006a) A unified view of the American monsoon systems. J Climate 19:4977–5000CrossRefGoogle Scholar
  57. Vera C, Silvestri G, Liebmann B, González P (2006b) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Gephys Res Lett 33:L13707. doi: 10.1029/2006GL025759 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jean-Philippe Boulanger
    • 1
  • G. Brasseur
    • 2
  • Andrea Fabiana Carril
    • 3
  • Manuel de Castro
    • 4
  • Nicolas Degallier
    • 1
  • Carlos Ereño
    • 5
  • H. Le Treut
    • 6
  • Jose Antonio Marengo
    • 7
  • Claudio Guillermo Menendez
    • 3
  • Mario Nestor Nuñez
    • 3
  • Olga C. Penalba
    • 5
  • Alfredo Luis Rolla
    • 3
  • Matilde Rusticucci
    • 5
  • Rafael Terra
    • 8
  1. 1.LOCEAN, UMR CNRS/IRD/UPMC, Tour 45-55/Etage 4/Case 100Paris Cedex 05France
  2. 2.National Center for Atmospheric Research (NCAR), Earth and Sun Systems Laboratory (ESSL)BoulderUSA
  3. 3.CONICETBuenos AiresArgentina
  4. 4.Universidad de Castilla-La ManchaToledoSpain
  5. 5.Depto Ciencias de la Atmósfera y los Océanos-UBABuenos AiresArgentina
  6. 6.Laboratoire de Météorologie DynamiqueInstitut-Pierre-Simon-Laplace et Ecole Doctorale “Sciences de l’Environnement en Ile de France”ParisFrance
  7. 7.Instituto Nacional de Pesquisas Espaciais INPECachoeira PaulistaBrasil
  8. 8.IMFIA, Facultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations