Climatic Change

, Volume 95, Issue 3–4, pp 369–394 | Cite as

Non-energy use of fossil fuels and resulting carbon dioxide emissions: bottom–up estimates for the world as a whole and for major developing countries

  • Martin Weiss
  • Maarten Neelis
  • Kornelis Blok
  • Martin Patel


We present and apply a simple bottom–up model for estimating non-energy use of fossil fuels and resulting CO2 (carbon dioxide) emissions. We apply this model for the year 2000: (1) to the world as a whole, (2) to the aggregate of Annex I countries and non-Annex I countries, and (3) to the ten non-Annex I countries with the highest consumption of fossil fuels for non-energy purposes. We find that worldwide non-energy use is equivalent to 1,670 ± 120 Mt (megatonnes) CO2 and leads to 700 ± 90 Mt CO2 emissions. Around 75% of non-energy use emissions is related to industrial processes. The remainder is attributed to the emission source categories of solvent and other product use, agriculture, and waste. Annex I countries account for 51% (360 ± 50 Mt CO2) and non-Annex I countries for 49% (340 ± 70 Mt CO2) of worldwide non-energy use emissions. Among non-Annex I countries, China is by far the largest emitter of non-energy use emissions (122 ± 18 Mt CO2). Our research deepens the understanding of non-energy use and related CO2 emissions in countries for which detailed emission inventories do not yet exist. Despite existing model uncertainties, we recommend NEAT-SIMP to inventory experts for preparing correct and complete non-energy use emission estimates for any country in the world.


Gross Domestic Product Bitumen Emission Factor International Energy Agency Ammonia Production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbeitsgemeinschaft Energiebilanzen e.V.—AGE (2007) Vollständige Energiebilanzen 1990–2003. German working group on energy balances. AGE homepageGoogle Scholar
  2. Central Bureau of Statistics—CBS (2006) Industrial production in the Netherlands. Confidential data for the period of 1990–2003. Voorburg, the NetherlandsGoogle Scholar
  3. Chemical Week (2000) Markets and economics—ammonia. ACCESS Intelligence PublicationGoogle Scholar
  4. Chemical Week (2006) Markets and economics—carbon black. ACCESS Intelligence PublicationGoogle Scholar
  5. Destatis—Statistisches Bundesamt (1990–2003a) Produzierendes Gewerbe. Fachserie 4, Reihe 3.1 Produktion im Produzierenden Gewerbe. Wiesbaden, GermanyGoogle Scholar
  6. Destatis—Statistisches Bundesamt (1990–2003b) Aussenhandel. Fachserie 7, Reihe 2 Aussenhandel nach Waren und Ländern (Spezialhandel). Wiesbaden, GermanyGoogle Scholar
  7. Food and Agriculture Organization of the United Nations—FAO (2006) Pesticides consumption. Cited 5 January 2007
  8. Freed R, Mintz C, Lanza R, Hockstadt L (2005) Analytic framework for analyzing non-energy uses of fossil fuels as petrochemical feedstock in the USA. Resour Conserv Recycl 45(3):275–294CrossRefGoogle Scholar
  9. Groenenberg H (2002) Development and convergence—a bottom-up analysis for the differentiation of future commitments under the climate convention. Dissertation, Utrecht University. Utrecht, The NetherlandsGoogle Scholar
  10. Institute for Prospective Technological Studies—IPTS (2001) Reference document on best available technologies in the non-ferrous metal industries. Cited 10 August 2004
  11. Institute for Prospective Technological Studies—IPTS (2004) Reference document on best available technologies in the large volume inorganic chemicals, ammonia, acids, and fertilizers industries. Draft March 2004. Seville, SpainGoogle Scholar
  12. Intergovernmental Panel on Climate Change—IPCC (1997) Greenhouse gas inventory reporting instruction, Revised 1996 IPCC guidelines for national greenhouse gas inventories (vol 1–3). IPCC WGI Technical Support Unit. Bracknell, United KingdomGoogle Scholar
  13. Intergovernmental Panel on Climate Change—IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Cited 10 November 2006
  14. Intergovernmental Panel on Climate Change—IPCC (2007) Working group III contribution to the Intergovernmental Panel on Climate Change forth assessment report. Geneva, SwitzerlandGoogle Scholar
  15. International Energy Agency—IEA (2005a) Energy balances of OECD countries 1960–2003. CD-ROM, Paris, FranceGoogle Scholar
  16. International Energy Agency—IEA (2005b) Energy balances of non-OECD countries 1971–2003. CD-ROM, Paris, FranceGoogle Scholar
  17. International Energy Agency—IEA (2006) Annual questionnaires. Cited 16 June 2008. Paris, France
  18. International Energy Agency—IEA (2007) Tracking industrial energy efficiency and CO2 emissions—In support of the G8 plan of action. Paris, FranceGoogle Scholar
  19. International Fertilizer Industry Association—IFA (2004) IFADATA-statistics, from 1973–1973/1974 to 2002–2002/2003. CD-ROM, Paris, FranceGoogle Scholar
  20. Kuramochi T (2006) Differentiation of greenhouse gas emissions reduction commitments based on a bottom-up approach: focus on industrial efficiency benchmarking and future industrial activity indicators. Masters thesis, Utrecht University. Utrecht, The NetherlandsGoogle Scholar
  21. La Motta S, Santino D, Ancona P, Weiss M (2005) CO2 emission accounting for the non-energy use of fossil fuels in Italy: a comparison between NEAT model and the IPCC approaches. Resour Conserv Recycl 45(3):310–330CrossRefGoogle Scholar
  22. Marland G, Boden TA, Andres RJ (2006) Global, regional, and national CO2 emissions. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, USAGoogle Scholar
  23. Neelis ML (2006) De bruikbaarheid van de Nederlandse Prodcom-en energiestatistieken voor de berekening van CO2-emissies en energiebesparing in de chemische industrie. Centraal Bureau voor de Statistiek. Voorburg/Herlen, The NetherlandsGoogle Scholar
  24. Neelis ML, Patel MK, Blok K (2005a) CO2 emissions and carbon storage resulting from the non-energy use of fossil fuels in the Netherlands, NEAT results for 1993–1999. Resour Conserv Recycl 45(3):251–274CrossRefGoogle Scholar
  25. Neelis ML, Patel MK, Gielen DJ, Blok K (2005b) Modelling CO2 emissions from non-energy use with the non-energy use emission accounting tables (NEAT) model. Resour Conserv Recycl 45(3):226–250CrossRefGoogle Scholar
  26. Olivier JGJ (2005a) Part III: greenhouse gas emissions: 1. Shares and trends in greenhouse gas emissions; 2. Sources and methods—greenhouse gas emissions for 1990 and 1995. In: CO2 emissions from fuel combustion 1971–2003, 2005 edn. International Energy Agency (IEA), Paris, France. pp III-1–III-31Google Scholar
  27. Olivier JGJ (2005b) EDGAR 32FT2000. Greenhouse gas emissions. Cited 3 July 2007
  28. Olivier JGJ, Peters JAHW (2002) Uncertainties in global, regional and national emission inventories. In: Van Ham J, Baede APM, Guicherit R, Williams-Jacobse JFGM (eds) Non-CO2 greenhouse gases: scientific understanding, control options and policy aspects. Proceedings of the Third International Symposium, vol 21–23. Maastricht, The Netherlands, pp 525–540Google Scholar
  29. Oil and Gas Journal (1999) Worldwide refining—OGJ specialGoogle Scholar
  30. Oil and Gas Journal (2001) Ethylene reportGoogle Scholar
  31. Park H (2005) Fossil fuel use and CO2 emissions in Korea: NEAT approach. Resour Conserv Recycl. 45(3):295–309CrossRefGoogle Scholar
  32. Patel MK (1999) Closing carbon cycles—Carbon use for materials in the context of resource efficiency and climate change. Dissertation, Utrecht University. Utrecht, The NetherlandsGoogle Scholar
  33. Patel MK, Jochem E, Marscheider-Weidemann F, Radgen P (1999) C-STRÖME: Abschätzung der Material-, Energie- und CO2-Ströme für Modellsysteme im Zusammenhang mit dem nichtenergetischen Verbrauch, orientiert am Lebensweg—Stand und Szenarienbetrachtung - Band I: Abschätzungen für das Gesamtsystem). Report prepared by Fraunhofer Institute for Systems and Innovation Research. Karlsruhe, GermanyGoogle Scholar
  34. Patel MK, Neelis ML, Gielen D et al (2005) Carbon dioxide emissions from non-energy use of fossil fuels: summary of key issues and conclusions from the country analyses. Resour Conserv Recycl. 45(3):195–209CrossRefGoogle Scholar
  35. Phylipsen D (2000) International comparisons & national commitments—Analysing energy and technology differences in the climate debate. Dissertation, Utrecht University. Utrecht, The NetherlandsGoogle Scholar
  36. Schmidt-Stejskal H, Steinlechner S, Windsperger A et al (2004) Studie zur Anpassung der Zeitreihe der Lösemittelemissionen der österreichischen Luftschadstoffinventur (OLI) 1980–2002. Report prepared for the Federal Environmental Agency of Austria. Vienna, AustriaGoogle Scholar
  37. Sonnenberg A, Sietz, M (2007) Pestizide in der Umwelt. FH Lippe und Höxter, GermanyGoogle Scholar
  38. Theloke J, Obermeier A, Friedrich R (2000) Ermittlung der Lösemittelemissionen 1994 in Deutschland und Methoden zur Fortschreibung. Universität Stuttgart, Insitut für Energiewirtschaft und Rationelle Energieanwendung (IER), Abteilung Technikfolgenabschätzung und Umwelt. Report No. 295 42 628 prepared for the Federal Environmental Agency of Germany. Berlin, GermanyGoogle Scholar
  39. Trischler (1997) Ermittlung von Altölvermeidungs-potenzialen. Trischler und Partner GmbH. Study issued by the German Environmental Agency (no 103 60 11 UBA-FB 97-034). Berlin, GermanyGoogle Scholar
  40. Ullmann F (1997) Encyclopedia of industrial chemistry, 5th edn on CD-ROM, vol A5. John Wiley and Sons Ltd.Google Scholar
  41. Umweltbundesamt—UBA (2004) Workshop Nationales System Emissionsinventare. Themenpapier: Emissionen von Rest-und Sekundärrohstoffen. Umweltbundesamt. Federal Environmental Agency of Germany. 8–9 November 2004. Berlin, GermanyGoogle Scholar
  42. United Nations—UN (2000) Industry commodity production statistics database. 1950–2000Google Scholar
  43. United Nations Framework Convention on Climate Change—UNFCCC (2005) Inventory review reports 2005. Cited 10 July 2007
  44. United Nations Framework Convention on Climate Change—UNFCCC (2006) National inventory submissions 2006, GHG inventories of Annex I countries. Cited 12 August 2006
  45. Weiss M, Neelis ML, Blok K, Patel MK (2008a) Non-energy use and related carbon dioxide emissions in Germany: a carbon flow analysis with the NEAT model for the period of 1990–2003. Resour Conserv Recycl 52:1252–1262CrossRefGoogle Scholar
  46. Weiss M, Neelis ML, Zuidberg MC, Patel MK (2008b) Applying bottom-up analysis to identify the system boundaries of non-energy use data in international energy statistics. Energy 33:1609–1622CrossRefGoogle Scholar
  47. Weissermel K, Arpe HJ (2003) Industrial organic chemistry, 4th edn. Wiley-VCHGoogle Scholar
  48. Worldbank (2004) World development indicators 2004. Cited 12 August 2006
  49. World Bureau of Metal Statistics—WBMS (2002) Metal statistics (1991–2002), 89th edn. Ware, EnglandGoogle Scholar
  50. Worrell E (1994) Potentials for improved use of industrial energy and materials. Dissertation, Utrecht University. Utrecht, The NetherlandsGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Martin Weiss
    • 1
  • Maarten Neelis
    • 1
  • Kornelis Blok
    • 1
  • Martin Patel
    • 1
  1. 1.Department of Chemistry, Section of Science, Technology and Society; Copernicus Institute—Research Institute for Sustainable Development and InnovationUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations