Climatic Change

, Volume 89, Issue 1–2, pp 45–66 | Cite as

Learning about the ocean carbon cycle from observational constraints and model simulations of multiple tracers

  • Long Cao
  • Atul K. Jain


A key question in studies of the potential for reducing uncertainty in climate change projections is how additional observations may be used to constrain models. We examine the case of ocean carbon cycle models. The reliability of ocean models in projecting oceanic CO2 uptake is fundamentally dependent on their skills in simulating ocean circulation and air–sea gas exchange. In this study we demonstrate how a model simulation of multiple tracers and utilization of a variety of observational data help us to obtain additional information about the parameterization of ocean circulation and air–sea gas exchange, relative to approaches that use only a single tracer. The benefit of using multiple tracers is based on the fact that individual tracer holds unique information with regard to ocean mixing, circulation, and air–sea gas exchange. In a previous modeling study, we have shown that the simulation of radiocarbon enables us to identify the importance of parameterizing sub-grid scale ocean mixing processes in terms of diffusive mixing along constant density surface (isopycnal mixing) and the inclusion of the effect of mesoscale eddies. In this study we show that the simulation of phosphate, a major macronutrient in the ocean, helps us to detect a weak isopycnal mixing in the upper ocean that does not show up in the radiocarbon simulation. We also show that the simulation of chlorofluorocarbons (CFCs) reveals excessive upwelling in the Southern Ocean, which is also not apparent in radiocarbon simulations. Furthermore, the updated ocean inventory data of man-made radiocarbon produced by nuclear tests (bomb 14C) enable us to recalibrate the rate of air–sea gas exchange. The progressive modifications made in the model based on the simulation of additional tracers and utilization of updated observational data overall improve the model’s ability to simulate ocean circulation and air–sea gas exchange, particularly in the Southern Ocean, and has great consequence for projected CO2 uptake. Simulated global ocean uptake of anthropogenic CO2 from pre-industrial time to the present day by both previous and updated models are within the range of observational-based estimates, but with substantial regional difference, especially in the Southern Ocean. By year 2100, the updated model estimated CO2 uptake are 531 and 133 PgC (1PgC = 1015 gram carbon) for the global and Southern Ocean respectively, whereas the previous version model estimated values are 540 and 190 PgC.


Southern Ocean Ocean Circulation Mesoscale Eddy Glob Biogeochem Cycle CFC11 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson LA, Sarmiento JL (1995) Global ocean phosphate and oxygen simulations. Glob Biogeochem Cycles 9(4):621–636CrossRefGoogle Scholar
  2. Aumont O, Orr J, Monfray P, Madec G, Maier-Reimer E (1999) Nutrient trapping in the equatorial Pacific: the ocean circulation solution. Glob Biogeochem Cycles 13:351–369CrossRefGoogle Scholar
  3. Broecker WS, Peng T-H, Ostlund G, Stuiber M (1985) The distribution of bomb radiocarbon in the ocean. J Geophys Res 90:6953–6970CrossRefGoogle Scholar
  4. Broecker WS, Sutherland S, Smethie W, Peng T-H, Ostlund G (1995) Oceanic radiocarbon: separation of the natural and bomb components. Glob Biogeochem Cycles 9:263–288CrossRefGoogle Scholar
  5. Cao L, Jain A (2005) An Earth system model of intermediate complexity: simulation of the role of ocean mixing parameterizations and climate change in estimated uptake for natural and bomb radiocarbon and anthropogenic CO2. J Geophys Res 110:C09002 DOI  10.1029/2005JC002919 CrossRefGoogle Scholar
  6. Conkright ME, Garcia HE, O’Brien TD, Locarnini RA, Boyer TP, Stephens C, Antonov JI (2002) World Ocean Atlas 2001, vol. 4, Nutrients, NOAA Atlas NESDIS 52. Natl Oceanic and Atmos Admin, Silver Spring, MDGoogle Scholar
  7. Doney SC et al (2004) Evaluating global ocean carbon models: the importance of realistic physics. Glob Biogeochem Cycles 18:GB3017 DOI  10.1029/2003GB002150 CrossRefGoogle Scholar
  8. Duffy PB, Caldeira K, Selvaggi J, Hoffert MI (1997) Effects of subgrid-scale mixing parameterizations on simulated distributions of natural 14C, temperature, and salinity in a three-dimensional ocean general circulation model. J Phys Oceanogr 27:498–253CrossRefGoogle Scholar
  9. Dutay J-C et al (2002) Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models. Ocean Model 4:89–120CrossRefGoogle Scholar
  10. Edwards NR, Marsh R (2005) Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model. Clim Dyn 24:415–433CrossRefGoogle Scholar
  11. England MH, Rahmstorf S (1999) Sensitivity of ventilation rates and radiocarbon uptake to subgrid-scale mixing in ocean models. J Phys Oceanogr 29:2802–2827CrossRefGoogle Scholar
  12. England MH, Maier-Reimer E (2001) Using chemical tracers to assess ocean models. Rev Geophys 39:29–70CrossRefGoogle Scholar
  13. Enting IG, Wigley TML, Heimann M (1994) Future emissions and concentrations of carbon dioxide: Key ocean/atmosphere/land analyses, Tech. Rep. 31, Div. of Atmos. Res., Commonw. Sci. and Ind. Res. Organ., MelbourneGoogle Scholar
  14. Fiadeiro ME (1982) Three-dimensional modeling of tracers in the deep Pacific Ocean, 2, Radiocarbon and the circulation. J Mar Res 40:537–550Google Scholar
  15. Gehrie E, Archer D, Emerson S, Stump C, Henning C (2006) Subsurface ocean argon disequilibrium reveals the equatorial Pacific shadow zone. Geophys Res Lett 33:L18608 DOI  10.1029/2006GL026935 CrossRefGoogle Scholar
  16. Gent PR, Willebrand J, McDougall TJ, McWilliams JC (1995) Parameterizing eddy-induced tracer transports in ocean circulation models. J Phys Oceanogr 25:463–474CrossRefGoogle Scholar
  17. Gnanadesikan A (1999) A simple predictive model for the structure of the oceanic pycnocline. Science 283:2077–2079CrossRefGoogle Scholar
  18. Gnanadesikan A, Slater RD, Gruber N, Sarmiento JL (2002) Oceanic vertical exchange and new production: a comparison between models and observations. Deep Sea Res, Part II 49:363–401CrossRefGoogle Scholar
  19. Guilderson T, Caldeira K, Duffy PB (2000) Radiocarbon as a diagnostic tracer in ocean and carbon cycle modeling. Glob Biogeochem Cycles 14:887–902CrossRefGoogle Scholar
  20. Harvey LDD (1995) Impact of isopycnal diffusion in a two-dimensional ocean model. J Phys Oceanogr 25:2166–2176CrossRefGoogle Scholar
  21. Harvey LDD (2001) A quasi-one-dimensional coupled climate-carbon cycle model: Part II. The carbon cycle component. J Geophys Res 106:22355–22372CrossRefGoogle Scholar
  22. Hirst AC, McDougall TJ (1998) Meridional overturning and dianeutral transport in a z-coordinate ocean model including eddy-induced advection. J Phys Oceanogr 28:1205–1223CrossRefGoogle Scholar
  23. Ito T, Deutsch C, Emerson S, Hamme RC (2007) Impact of diapycnal mixing on the saturation state of argon in the subtropical North Pacific. Geophys Res Lett 34:L09602 DOI  10.1029/2006GL029209 CrossRefGoogle Scholar
  24. Jain AK, Kheshgi HS, Hoffert MI, Wuebbles DJ (1995) Distribution of radiocarbon as a test of global carbon-cycle models. Glob Biogeochem Cycles 9:153–166CrossRefGoogle Scholar
  25. Joos F, Plattner G-K, Stocker TF, Marchal O, Schmittner A (1999) Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284:464–467CrossRefGoogle Scholar
  26. Keeling CD, Whorf TP (2000) Atmospheric CO2 records from sites in the SIO air sampling network. Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN., USAGoogle Scholar
  27. Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R, Bullister JL, Feely RA, Millero FJ, Mordy C, Peng T-H (2004) A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob Biogeochem Cycles 18:GB4031 DOI  10.1029/2004GB002247 CrossRefGoogle Scholar
  28. Kheshgi HS, Jain AK (2003) Projecting future climate change: implications of carbon cycle model intercomparision. Glob Biogeochem Cycles 17(2):1047 DOI  10.1029/2001GB001842 CrossRefGoogle Scholar
  29. Knutti R, Stocker TF, Wright DG (2000) The effects of sub-grid-scale parameterizations in a zonally averaged ocean model. J Phys Oceanogr 30:2738–2752CrossRefGoogle Scholar
  30. Le Quéré C et al (2005) Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob Chang Biol 11:1–25 DOI  10.1111/j.1356-2486.2005.0010004.x CrossRefGoogle Scholar
  31. Maier-Reimer E (1993) Geochemical cycles in an ocean general circulation model: preindustrial tracer distributions. Glob Biogeochem Cycles 7:645–677CrossRefGoogle Scholar
  32. Manning AC, Keeling RF (2006) Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus 58:95–116CrossRefGoogle Scholar
  33. Marchal O, Stocker TF, Joos F (1998) A latitude-depth, circulation-biogeochemical ocean model for paleoclimate studies: model development and sensitivities. Tellus 50B:290–316Google Scholar
  34. Marshall JC, Radko T (2003) Residual mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J Phys Oceanogr 33:2341–2354CrossRefGoogle Scholar
  35. Matsumoto K et al (2004) Evaluation of ocean carbon cycle models with data-based metrics. Geophys Res Lett 31:L07303 DOI  10.1029/2003GL018970 CrossRefGoogle Scholar
  36. McNeil BI, Matear RJ, Key RM, Bullister JL, Sarmiento JL (2003) Anthropogenic CO2 uptake by the ocean based on the global chlorofluorocarbon data set. Science 299:235–239CrossRefGoogle Scholar
  37. Melnikov NB, O’Neill BC (2006) Learning about the carbon cycle from global budget data. Geophys Res Lett 33:L02705 DOI  10.1029/2005GL023935 CrossRefGoogle Scholar
  38. Mikaloff Fletcher SE et al (2006) Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Glob Biogeochem Cycles 20:GB2002 DOI  10.1029/2005GB002530 CrossRefGoogle Scholar
  39. Müller SA, Joos F, Edwards NR, Stocker TF (2006) Water mass distribution and ventilation time scales in a cost-efficient, three-dimensional ocean model. J Climate 19(21):5479–5499 DOI  10.1175/JCLI3911.1 CrossRefGoogle Scholar
  40. Müller et al (2008) Gas exchange rates and modeled regional inventories of excess radiocarbon. Glob Biogeochem Cycles. DOI 10.1029/2007GB003065 (in press)
  41. Naegler T, Levin I (2006) Closing the global radiocarbon budget 1945–2005. J Geophys Res 111:D12311 DOI  10.1029/2005JD006758 CrossRefGoogle Scholar
  42. Naegler T, Ciais P, Rodgers KB, Levin I (2006) Excess radiocarbon constraints on air–sea gas exchange and the uptake of CO2 by the oceans. Geophys Res Lett 33:L11802 DOI  10.1029/ 2005GL025408 CrossRefGoogle Scholar
  43. Najjar RG, Sarmiento JL, Toggweiler JR (1992) Downward transport and fate of organic matter in the ocean: simulations with a general circulation model. Glob Biogeochem Cycles 6:45–76CrossRefGoogle Scholar
  44. Najjar RG et al. (2007) Impact of circulation on export production, dissolved organic matter and dissolved oxygen in the ocean: Results from phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Global Biogeochem Cy 21:GB3007. DOI 10.1029/2006GB002857
  45. Oeschger H, Siegenthaler U, Schotterer U, Guglemann A (1975) A box-diffusion model to study the carbon dioxide exchange in nature. Tellus 27:168–292CrossRefGoogle Scholar
  46. O’Neill BC, Melnikov NB (2007) Learning about parameter and structural uncertainty in carbon cycle models. Climatic Change (in press)Google Scholar
  47. Orr JC et al (2001) Estimates of anthropogenic carbon uptake from four 3-D global ocean models. Glob Biogeochem Cycles 15:43–60CrossRefGoogle Scholar
  48. Peacock S (2004) Debate over the ocean bomb radiocarbon sink: closing the gap. Glob Biogeochem Cycles 18:GB2022 DOI  10.1029/2003GB002211 CrossRefGoogle Scholar
  49. Prentice IC et al (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT et al (ed) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. . Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  50. Redi MH (1982) Oceanic isopycnal mixing by coordinate rotation. J Phys Oceanogr 12:1154–1158CrossRefGoogle Scholar
  51. Robitaille DY, Weaver AJ (1995) Validation of sub-grid scale mixing schemes using CFCs in a global ocean model. Geophys Res Lett 22:2917–2920CrossRefGoogle Scholar
  52. Roy T, Rayner P, Matear R, Francey R (2003) Southern hemisphere ocean CO2 uptake: reconciling atmospheric and oceanic estimates. Tellus 55B:701–710Google Scholar
  53. Sabine CL et al (2004) The oceanic sink for anthropogenic CO2. Science 305:367–370CrossRefGoogle Scholar
  54. Saenko OA, Weaver AJ (2003) Southern Ocean upwelling and eddies: Sensitivity of the global overturning to the surface density range. Tellus 55A:106–111Google Scholar
  55. Sarmiento JL, Orr JC, Siegenthaler U (1992) A perturbation simulation of CO2 uptake in an ocean general circulation model. J Geophys Res 97(C3):3621–3645CrossRefGoogle Scholar
  56. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60CrossRefGoogle Scholar
  57. Siegenthaler U, Joos F (1992) Use of a simple model for studying oceanic tracer distributions and the global carbon cycle. Tellus, 44B, 186–207Google Scholar
  58. Stocker TF, Broecker WS, Wright DG (1994) Carbon uptake experiments with a zonally averaged global ocean circulation model. Tellus 46B:103–122Google Scholar
  59. Stuiver M, Pollach HA (1977) Discussion and reporting of 14C data. Radiocarbon 19:355–363Google Scholar
  60. Sweeney C, Gloor E, Jacobson AR, Key RM, McKinley G, Sarmiento JL, Wanninkhof R (2007) Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Glob Biogeochem Cycles 21:GB2015 DOI 10.1029/2006GB002784
  61. Taylor KE (2001) Summarizing multiple aspects of model performance in single diagram. J Geophys Res 106:7183–7192CrossRefGoogle Scholar
  62. Toggweiler JR, Dixon K, Bryan K (1989a) Simulations of radiocarbon in a coarse-resolution world ocean model 1, Steady-state prebomb distributions. J Geophys Res 94:8217–8242CrossRefGoogle Scholar
  63. Toggweiler JR, Dixon K, Bryan K (1989b) Simulations of radiocarbon in a coarse-resolution world ocean model 2, Distributions of bomb-produced carbon 14. . Geophys Res 94:8243–8264CrossRefGoogle Scholar
  64. Visbeck M, Marshall J, Haine T, Spall M (1997) Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J Phys Oceanogr 27:381–402CrossRefGoogle Scholar
  65. Wanninkhof R (1992) Relationship between wind-speed and gas-exchange over the ocean. J Geophys Res 97:7373–7382CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Atmospheric SciencesUniversity of IllinoisUrbanaUSA
  2. 2.Department of Global EcologyCarnegie InstitutionStanfordUSA

Personalised recommendations