Advertisement

Climatic Change

, Volume 81, Supplement 1, pp 281–291 | Cite as

Present-day and future precipitation in the Baltic Sea region as simulated in a suite of regional climate models

  • Erik Kjellström
  • Kimmo Ruosteenoja
Article

Abstract

Here we investigate simulated changes in the precipitation climate over the Baltic Sea and surrounding land areas for the period 2071–2100 as compared to 1961–1990. We analyze precipitation in 10 regional climate models taking part in the European PRUDENCE project. Forced by the same global driving climate model, the mean of the regional climate model simulations captures the observed climatological precipitation over the Baltic Sea runoff land area to within 15% in each month, while single regional models have errors up to 25%. In the future climate, the precipitation is projected to increase in the Baltic Sea area, especially during winter. During summer increased precipitation in the north is contrasted with a decrease in the south of this region. Over the Baltic Sea itself the future change in the seasonal cycle of precipitation is markedly different in the regional climate model simulations. We show that the sea surface temperatures have a profound impact on the simulated hydrological cycle over the Baltic Sea. The driving global climate model used in the common experiment projects a very strong regional increase in summertime sea surface temperature, leading to a significant increase in precipitation. In addition to the common experiment some regional models have been forced by either a different set of Baltic Sea surface temperatures, lateral boundary conditions from another global climate model, a different emission scenario, or different initial conditions. We make use of the large number of experiments in the PRUDENCE project, providing an ensemble consisting of more than 25 realizations of climate change, to illustrate sources of uncertainties in climate change projections.

Keywords

Regional Climate Model Emission Scenario Global Climate Model Global Precipitation Climatology Project Regional Climate Model Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christensen JH, Christensen OB (2007) The PRUDENCE simulations: model validation and climate change. Clim Change, doi:10.1007/s10584-006-9210-7 (this issue)
  2. Christensen JH, Carter T, Rummukainen M (2007) Evaluating the performance and utility of regional climate models in climate change research: reducing uncertainties in climate change projections – the PRUDENCE approach. Clim Change, doi:10.1007/s10584-006-9211-6 (this issue)
  3. Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of future climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai K, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, p 881Google Scholar
  4. Déqué M, Rowell D, Schär C, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate models for Europe: assessing uncertainties in model projections. Clim Change, doi:10.1007/s10584-006-9228-x (this issue)
  5. Döscher R, Willén U, Jones C, Rutgersson A, Meier HEM, Hansson U, Graham LP (2002) The development of the coupled regional ocean-atmosphere model RCAO. Boreal Environ Res 7:183–192Google Scholar
  6. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extent and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–166CrossRefGoogle Scholar
  7. Graham LP, Hagemann S, Jaun S, Beniston M (2007) On interpreting hydrological change from regional climate models. Clim Change, doi:10.1007/s10584-006-9217-0 (this issue)
  8. Hagemann S, Machenauer B, Jones R, Christensen OB, Déqué M, Jacob D, Vidale PL (2004) Evaluation of water and energy budgets in regional climate models applied over Europe. Clim Dyn 23:547–567CrossRefGoogle Scholar
  9. Hanssen-Bauer I, Førland E, Haugen JE, Tveito OE (2003) Temperature and precipitation scenarios for Norway: comparison of results from dynamical and empirical downscaling. Clim Res 25:15–27CrossRefGoogle Scholar
  10. Huffman GJ, Adler R, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, Mcnab A, Rudolf B, Schneider U (1997) The global precipitation climatology project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78:5–20CrossRefGoogle Scholar
  11. Jacob D, Vand den Hurk B, Andrae U, Elgered G, Fortelius C, Graham P, Jackson S, Karstens U, Köpken C, Lindau R, Podzun R, Rockel B, Rubel F, Sass B, Smith R, Yang X (2001) A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorol Atmos Phys 77:19–43CrossRefGoogle Scholar
  12. Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An intercomparison of regional climate models for Europe: design of the experiments and model performance. Clim Change, doi:10.1007/s10584-006-9213-4 (this issue)
  13. Jones CG, Wyser K, Ullerstig A, Willén U (2004a) The Rossby Centre regional atmospheric climate model (RCA). Part II: application to the Arctic climate. Ambio 33(4–5):211–220CrossRefGoogle Scholar
  14. Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004b) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter, UK, p 35Google Scholar
  15. Kjellström E, Döscher R, Meier M (2005) Atmospheric response to different sea surface temperatures in the Baltic Sea: coupled versus uncoupled regional climate model experiments. Nord Hydrol 36(4–5):397–409Google Scholar
  16. Nakićenović N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A et al (2000) Emission scenarios. A special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, p 599Google Scholar
  17. New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238CrossRefGoogle Scholar
  18. Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16(2–3):123–146CrossRefGoogle Scholar
  19. Räisänen J (2001) CO2-induced climate change in CMIP2 experiments: quantification of agreement and role of internal variability. J Clim 14:2088–2104CrossRefGoogle Scholar
  20. Raschke E, Meywerk J, Warrach K, Andrae U, Bergström S, Beyrich F, Bosveld F, Bumke K, Fortelius C, Graham LP, Gryning S-E, Halldin S, Hasse L, Heikinheimo M, Isemer H-J, Jacob D, Jauja I, Karlsson K-G, Keevallik S, Koistinen J, van Lammeren A, Lass U, Launiainen J, Lehmann A, Liljebladh B, Lobmeyr M, Matthäus W, Mengelkamp T, Michelson DB, Napiórkowski J, Omstedt A, Piechura J, Rockel B, Rubel F, Ruprecht E, Smedman A-S, Stigebrandt A (2001) BALTEX (Baltic Sea Experiment): a European contribution to investigate the energy and water cycle over a large drainage basin. Bull Am Meteorol Soc 82:2389–2413CrossRefGoogle Scholar
  21. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407, DOI: 10.1029/2002JD002670, 2003
  22. Rowell DP (2006) A demonstration of the uncertainty in projections of UK climate change resulting from regional model formulation. Clim Change 79:243–257CrossRefGoogle Scholar
  23. Rubel F, Hantel M (2001) BALTEX 1/6-degree daily precipitation climatology 1996–1998. Meteorol Atmos Phys 77:155–166CrossRefGoogle Scholar
  24. Rubel F, Rudolf B (2001) Global daily precipitation estimates proved over the European Alps. Meteorol Z 10:407–418CrossRefGoogle Scholar
  25. Ruosteenoja K, Tuomenvirta H, Jylhä K (2007) GCM-based regional temperature and precipitation change estimates for Europe under four SRES scenarios applying a super-ensemble pattern-scaling method. Clim Change (this issue)Google Scholar
  26. Rutgersson A, Bumke K, Clemens M, Foltescu V, Lindau R, Michelson D, Omstedt A (2001) Precipitation estimates over the Baltic Sea: present state of the art. Nord Hydrol 32:285–314Google Scholar
  27. Smith TM, Reynolds RW, Livezey RE, Stokes DC (1996) Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J Clim 9:1403–1420CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  1. 1.Rossby CentreSMHINorrköpingSweden
  2. 2.Finnish Meteorological InstituteHelsinkiFinland

Personalised recommendations