Skip to main content

Advertisement

Log in

Competitiveness of terrestrial greenhouse gas offsets: are they a bridge to the future?

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Activities to reduce net greenhouse gas emissions by biological soil or forest carbon sequestration predominantly utilize currently known, readily implementable technologies. Many other greenhouse gas emission reduction options require future technological development or must wait for turnover of capital stock. Carbon sequestration options in soils and forests, while ready to go now, generally have a finite life, allowing use until other strategies are developed. This paper reports on an investigation of the competitiveness of biological carbon sequestration from a dynamic and multiple strategy viewpoint. Key factors affecting the competitiveness of terrestrial mitigation options are land availability and cost effectiveness relative to other options including CO2 capture and storage, energy efficiency improvements, fuel switching, and non-CO2 greenhouse gas emission reductions. The analysis results show that, at lower CO2 prices and in the near term, soil carbon and other agricultural/forestry options can be important bridges to the future, initially providing a substantial portion of attainable reductions in net greenhouse gas emissions, but with a limited role in later years. At higher CO2 prices, afforestation and biofuels are more dominant among terrestrial options to offset greenhouse gas emissions. But in the longer run, allowing for capital stock turnover, options to reduce greenhouse gas emissions from the energy system and biofuels provide an increasing share of potential reductions in total US greenhouse gas emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams DM, Alig RJ, Callaway JM et al (1996) The forest and agricultural sector optimization model (FASOM): Model description. USDA Forest Service Report PNW-RP-495

  • Adams DM, Alig RJ, McCarl BA et al (2005) FASOMGHG conceptual structure, and specification: documentation. Texas A&M University, (http://agecon2.tamu.edu/people/faculty/mccarl-bruce/papers/1212FASOMGHG_doc.pdf)

  • Antle JM, Capalbo SM, Mooney S et al (2002) A comparative examination of the efficiency of sequestering carbon in U.S. agricultural soils. Am J Altern Agric 17(3):109–115

    Article  Google Scholar 

  • Birdsey RA (1996) Carbon storage for major forest types and regions in the conterminous United States. In: Sampson RN, Hair D (eds) Forests and global change, vol 2: forest management opportunities for mitigating carbon emissions chapter 1. American Forests, Washington, District of Columbia

    Google Scholar 

  • Birdsey RA, Lewis GM (2003) Carbon in United States forests and wood products, 1987–1997: State-by-state estimates. General Technical Report NE-310, U.S. Department of Agriculture, Forest Service, Northeast Research Station, Newton Square, Pennsylvania

  • David J, Herzog H (2000) The cost of carbon capture. Proceedings of the fifth international conference on greenhouse gas control technologies, CSIRO Publishing, Collingwood, Australia

  • DeAngelo B, de la Chesnaye FC, Beach RH et al (2006) Methane and nitrous oxide mitigation in agriculture. Energy Journal special issue on Multigas Mitigation and Climate Change

  • Delhotal K, de la Chesnaye FC, Gardiner A et al (2006) Mitigation of methane and nitrous oxide emissions from waste, energy and industry. Energy Journal special issue on Multigas Mitigation and Climate Change

  • Edmonds JA, Pitcher HM, Sands RD (2004) Second generation model 2004: an overview. PNNL-14916, Pacific Northwest National Laboratory, Richland, Washington (http://www.epa.gov/air/sgm-sab.html)

  • Fawcett AA, Sands RD (2005) The second generation model: model description and theory. PNNL-15432, Pacific Northwest National Laboratory, Richland, Washington (http://www.epa.gov/air/sgm-sab.html)

  • Fawcett AA, Sands RD (2006) Non-CO2 greenhouse gases in the second generation model. Energy Journal special issue on Multigas Mitigation and Climate Change

  • Hotelling H (1931) The economics of exhaustible resources. J Polit Econ 39(2):137–175

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2002) Good practice guidance and uncertainty management in national greenhouse gas inventories, available on line at http://www.ipcc-nggip.iges.or.jp/public/gp/english/

  • Lal R, Kimble JM, Follett RF et al (1998) The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Sleeping Bear Press Inc, Chelsea, Michigan

    Google Scholar 

  • Lee HC (2002) The dynamic role for carbon sequestration by the U.S. agricultural and forest sectors in greenhouse gas emission mitigation. PhD Thesis, Department of Agricultural Economics, Texas A&M University

  • Lee HC, McCarl BA, Gillig D et al (2005) U.S. agriculture and forestry based greenhouse gas emission mitigation: an economic exploration of time dependent effects. In: Brouwer F, McCarl BA (eds) Rural lands, agriculture and climate beyond 2015: usage and management responses. Kluwer

  • Lecocq F, Chomitz KM (2001) Optimal use of carbon sequestration in a global climate change strategy: is there a wooden bridge to a clean energy future? World Bank Policy Research Working Paper No. 2635

  • Marland G, McCarl BA, Schneider UA (2001) Soil carbon: policy and economics. Clim Change 51(1):101–117

    Article  Google Scholar 

  • McCarl BA, Schneider UA (2000) Agriculture’s role in a greenhouse gas emission mitigation world: an economic perspective. Rev Agric Econ 22(1):134–159

    Article  Google Scholar 

  • McCarl BA, Schneider UA (2001) The cost of GHG mitigation in U. S. agriculture and forestry. Sci 294:2481–2482

    Article  Google Scholar 

  • Ottinger D, Godwin D, Harnisch J (2006) Estimating future emissions and potential reductions of HFCs, PFCs and SF6. Energy Journal special issue on Multigas Mitigation and Climate Change

  • Parton WJ (1996) The CENTURY model. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models using existing long-term datasets. Springer, Berlin Heidelberg New York pp 283–293

    Google Scholar 

  • Sands RD (2004) Dynamics of carbon abatement in the second generation model. Energy Econ 26(4):721–738

    Article  Google Scholar 

  • Sands RD, Fawcett AA (2005) The second generation model: data, parameters, and implementation. PNNL-15431, Pacific Northwest National Laboratory, Richland, Washington (http://www.epa.gov/air/sgm-sab.html)

  • Skog KE, Pingoud K, Smith JE (2004) A method countries can use to estimate changes in carbon stored in harvested wood products and the uncertainty of such estimates. Environ Manage 33 Supplement 1:S65–S73

    Google Scholar 

  • Smith JE, Heath LS, Jenkins JC (2003) Forest volume-to-biomass models and estimates of mass for live and standing dead trees of U.S. forests. USDA Forest Services, Newton Square, Pennsylvania

    Google Scholar 

  • Smith JE, Heath LS, Jenkins JC (2004) How to estimate forest carbon for large areas from inventory data. J For 102(5):25–31

    Google Scholar 

  • United Nations (1992) United Nations framework convention on climate change. New York. Retrieved from http://unfccc.int/2860.php

  • US Energy Information Administration (2002) Annual energy outlook. DOE/EIA-0383(2002), Washington, District of Columbia

  • US Environmental Protection Agency (2003) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2001, Annex O. EPA 430-R-03-004, Washington, District of Columbia

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66:1930–1946

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald D. Sands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarl, B.A., Sands, R.D. Competitiveness of terrestrial greenhouse gas offsets: are they a bridge to the future?. Climatic Change 80, 109–126 (2007). https://doi.org/10.1007/s10584-006-9168-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-006-9168-5

Keywords

Navigation