Climatic Change

, Volume 77, Issue 3–4, pp 279–289 | Cite as

The Relationship Between Radiative Forcing and Temperature: What Do Statistical Analyses of the Instrumental Temperature Record Measure?

  • Robert K. Kaufmann
  • Heikki Kauppi
  • James H. Stock
Open Access


Comparing statistical estimates for the long-run temperature effect of doubled CO2 with those generated by climate models begs the question, is the long-run temperature effect of doubled CO2 that is estimated from the instrumental temperature record using statistical techniques consistent with the transient climate response, the equilibrium climate sensitivity, or the effective climate sensitivity. Here, we attempt to answer the question, what do statistical analyses of the observational record measure, by using these same statistical techniques to estimate the temperature effect of a doubling in the atmospheric concentration of carbon dioxide from seventeen simulations run for the Coupled Model Intercomparison Project 2 (CMIP2). The results indicate that the temperature effect estimated by the statistical methodology is consistent with the transient climate response and that this consistency is relatively unaffected by sample size or the increase in radiative forcing in the sample.


Statistical Estimate Climate Sensitivity Atmospheric Concentration Radiative Force Statistical Methodology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akaike, H.: 1973, ‘Information theory and the extension of the maximum likelihood principle’, in Petrov, P. N. and Csaki, F. (eds.), 2nd International Symposium on Information Theory, Budapest.Google Scholar
  2. Allen, M. R., Stott, P. A., Mitchell, J. F. B., Schnur, R., and Delworth, T. L.: 2000, ‘Quantifying the uncertainty in forecasts of anthropogenic climate change’, Nature 407, 617–620.PubMedCrossRefADSGoogle Scholar
  3. Andronova, N. G., and Schlesinger, M. E.: 2001, ‘Objective estimation of the probability density function for climate sensitivity’, J. Geophys. Res. 106(D19), 22605–22611.CrossRefADSGoogle Scholar
  4. Covey, C., et al.: 2003, ‘An overview of results from the coupled model intercomparison project (CMIP)’, Global and Planetary Change, 37, 103–133.CrossRefADSGoogle Scholar
  5. Cubash, U. and Meehl, G. A.: 2001, ‘Projections of future climate change’, in Houghton et al. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, New York.Google Scholar
  6. Dickey, D. A. and Fuller, W. A.: 1979, ‘Distribution of the estimators for auto regressive time series with a unit root’, J. Am. Statistics Assoc. 7, 427–431.MathSciNetCrossRefGoogle Scholar
  7. Engle, R. F. and Granger, C. W. J.: 1987, ‘Co-integration and error correction: Representation, estimation, and testing’, Econometrica 55, 251–276.MATHMathSciNetCrossRefGoogle Scholar
  8. Forest, et al.: 2002, ‘Quantifying uncertainties in climate system properties with the use of recent climate observations’, Science 295, 113–117.PubMedMathSciNetCrossRefADSGoogle Scholar
  9. Harvey, L. D. D.: 2000, Global Warming: The Hard Science, Prentice Hall, Harlow (UK).Google Scholar
  10. Kaufmann, R. K. and Stern, D. I.: 2002, ‘Cointegration analysis of hemispheric temperature relations’, J. Geophys. Res. 107, D210.1029, 2000JD000174.Google Scholar
  11. Kaufmann, R. K., Kauppi, H., and Stock. J. H.: 2006, ‘Emissions, concentrations, and temperature: A time series analysis’, Climatic Change. current issue, 77, 3–4.Google Scholar
  12. MacKinnon, J. A.: 1994, ‘Approximate asymptotic distribution functions for unit-root and cointegration tests’, J. Bus. Econ. Stat. 12, 167–176.MathSciNetCrossRefGoogle Scholar
  13. Mitchell, J. F. B. and Karoly, D. J.: 2001, ‘Detection of climate change and attribution of causes’, in Houghton et al. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, New York.Google Scholar
  14. Newey, W. K. and West, K. D.: 1987, ‘A simple positive semi-definite heteroskedasticity and autocorrelation consistent covariance matrix’, Econometrica 55, 703–708.MATHMathSciNetCrossRefGoogle Scholar
  15. Schwartz, G.: 1978, ‘Estimating the dimension of a model’, Annals of Statistics 6, 461–464.MathSciNetGoogle Scholar
  16. Stock, J. H. and Watson, M. W.: 1993, ‘A simple estimator of cointegrating vectors in higher order integrated systems’, Econometrica, 61, 783–820.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Robert K. Kaufmann
    • 1
  • Heikki Kauppi
    • 2
  • James H. Stock
    • 3
  1. 1.Center for Energy & Environmental StudiesBoston UniversityBostonUSA
  2. 2.Department of EconomicsUniversity of HelsinkiHelsinkiFinland
  3. 3.Deparment of EconomicsHarvard UniversityCambridgeUSA

Personalised recommendations