Advertisement

Climatic Change

, Volume 74, Issue 1–3, pp 319–347 | Cite as

Greenhouse Gas Dynamics of an Increased Use of Wood in Buildings in Switzerland

  • Frank Werner
  • Ruedi Taverna
  • Peter Hofer
  • Klaus Richter
Article

Abstract

Long-living wood products contribute to the mitigation of climate change in many ways. They act as a carbon pool during their service life, as they withdraw CO2 from its natural cycle. After their service life, they can stitute for fossil fuels if they are incinerated in adequate furnaces. Furthermore, wood products can stitute for more energy-intense products made of ‘conventional’ materials. This paper quantifies the stitution and pool effects of an increased use of wood in the building sector in Switzerland for the years 2000–2130. Life cycle data on greenhouse gas (GHG) emissions of 12 wood products and their stitutes are used as proxies for relevant building products; this data is linked to the forecasted wood flows for each group of building products in a cohort-model. For the political assessment, GHG effects occurring abroad and in Switzerland are distinguished. The results show that the pool effect of an increased use of long-living wood products is of minor importance, whereas the energetic and material stitution effects are much more relevant, especially on a long-term. For construction products, the Swiss share of the GHG effect related to the material stitution is relatively high, as mainly nationally produced materials are stituted for. For interior products, the Swiss share of the GHG effect related to the material stitution is rather small because mainly imports are stituted for. The results must be considered as rough estimates. Nonetheless, these calculations show that an increased use of wood in the building sector is a valid and valuable option for the mitigation of greenhouse gas emissions and for reaching GHG emission targets in a mid- to long-term. Still, the pool and stitution capacity of an increased use of wood is relatively small compared to the overall GHG emissions of Switzerland.

Keywords

Life Cycle Assessment Wood Product Life Cycle Inventory Carbon Pool Substitution Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Börjesson, P. and Gustavsson, L.: 2000, ‘Greenhouse gas balances in building construction: Wood versus concrete from life-cycle and forest land-use perspectives’, Energy Policy 28(9), 575–588.CrossRefGoogle Scholar
  2. Brassel, P. and Brändli, U. B. (eds.): 1999, ‘Schweizerisches Landesforstinventar’, Ergebnisse der Zweitaufnahme 1993–1995. Haupt, Bern, Stuttgart, Wien.Google Scholar
  3. Buchanan, A. H. and Honey, B. G.: 1994, ‘Energy and carbon dioxide implications of building construction’, Energy Build. 20, 205–217.CrossRefGoogle Scholar
  4. Buchanan, A. H. and Levine, S. B.: 1999, ‘Wood-based building materials and atmospheric carbon emissions’, Environ. Sci. Policy 2(6), 427–437.CrossRefGoogle Scholar
  5. BUWAL: 1996, ‘Endverbrauch des Holzes in der Schweiz 1996’, Umwelt-Materialien Nr. 94, Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern.Google Scholar
  6. BfS/BUWAL: 2000, ‘Wald und Holz in der Schweiz; Jahrbuch 2000’, Statistik der Schweiz, Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bundesamt für Statistik (BFS), Neuenburg.Google Scholar
  7. Fischlin, A.: 1996, ‘Conflicting objectives while maximising carbon sequestration by forests’, in Forest Ecosystems, Forest Management and the Global Carbon Cycle, NATO ASI Series, Vol. I 40, Springer-Verlag, Berlin, Heidelberg, pp. 163–172.Google Scholar
  8. Ford-Robertson, J.: 2003, ‘Implications of harvested wood products accounting; analysis of issues raised by parties to the UNFCCC and development of a simple decay approach’, MAF Technical Paper No: 2003/5, Ministry of Agriculture and Forestry, Wellington.Google Scholar
  9. Frischknecht, R. and Knechtle, N.: 2000, Heizenergie aus Heizöl, Erdgas oder Holz? Schriftenreihe Umwelt SRU 315, Bundesamt für Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern.Google Scholar
  10. Frischknecht, R., Suter, P., Bollens, U., Bosshart, S., Ciot, M., Ciseri, L., Doka, G., Hischier, R., Martin, A., Dones, R., and Gantner, U.: 1996, ‘Ökoinventare von Energiesystemen, Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz’, 3. Aufl., Bundesamt für Energiewirtschaft (BEW/PSEL), Bern.Google Scholar
  11. Hashimoto, S., Nose, M., Obara, T., and Moriguchi, Y.: 2002, ‘Wood products: Potential carbon sequestration and impact on net carbon emissions of industrialized countries’, Environ. Sci. Policy 5(2002), 183–193.CrossRefGoogle Scholar
  12. Hofer, P., Morf, L., Taverna, R., and Richter, K.: 2001, ‘Speicherung von CO2 in Holzlagern im Zivilisationskreislauf und Emissionseffekte der Substitution bei gesteigerter Holzverwendung’, GEO Partner, Zürich.Google Scholar
  13. Hofer, P., Taverna, R., Richter, K., and Werner, F.: 2002a, ‘Gebäudepark als Holzlager’, GEO Partner, Zürich.Google Scholar
  14. Hofer, P., Taverna, R., Richter, K., and Werner, F.: 2002b, ‘Senkenleistung und Materialsubstitution beim Schweizer Gebäudepark im Hinblick auf die nationale Treibhausgasbilanz’, GEO Partner, Zürich.Google Scholar
  15. IPCC: 1996, Climate Change 1995; The Science of Climate Change, Cambridge University Press, published for the International Panel on Climate Change (IPCC), Cambridge.Google Scholar
  16. IPCC (ed.): 1997a, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories; Volume 1: Reporting Instructions.Google Scholar
  17. IPCC (ed.): 1997b, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories; Volume 2: Workbook.Google Scholar
  18. IPCC (ed.): 1997c, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories; Volume 3: Greenhouse Gas Inventory Reference Manual.Google Scholar
  19. IPCC (ed.): 1998, ‘Evaluating approaches for estimating net emissions of carbon dioxide from forest harvesting and wood products; meeting report, Dakar, Senegal, 5–7 May 1998’, IPCC/OECD/IEA Programme on National Greenhouse Gas Inventories, Geneva.Google Scholar
  20. IPCC (ed.): 2000, Land Use, Land-Use Change, and Forestry; A Special Report of the IPCC, Cambridge University Press, Cambridge.Google Scholar
  21. IPCC: 2003, Good Practice Guidance For Land Use, Land-Use Change and Forestry, Institute for Global Environmental Strategies (IGES), Hayama.Google Scholar
  22. Karjalainen, T.: 1996, ‘Model computations on sequestration of carbon in managed forests and wood products under changing climatic conditions in Finland’, J. Environ. Manage. 47(4), 311–328.CrossRefGoogle Scholar
  23. Koch, P.: 1992, ‘Wood versus nonwood materials in U.S. residential construction: Some energy related global implications’, Forest Prod. J. 42(5), 31–42.Google Scholar
  24. Künniger, T. and Richter, K.: 1997, ‘Ökologischer Vergleich von Freileitungsmasten aus imprägniertem Holz, armiertem Beton und korrosionsgeschütztem Stahl’, Eidg. Materialprüfungs- und Forschungsanstalt (Empa), Dübendorf.Google Scholar
  25. Künniger, T. and Richter, K.: 1998, ‘Ökologischer Vergleich von Eisenbahnschwellen in der Schweiz; Streckenschwellen aus vorgespanntem Beton, Profilstahl und teerölimprägniertem Buchenholz, Forschungs- und Arbeitsbericht 115/38’, Eidg. Materialprüfungs- und Forschungsanstalt (Empa), Dübendorf.Google Scholar
  26. Künniger, T. and Richter, K.: 2000, ‘Ökobilanzen von Konstruktionen im Garten- und Landschaftsbau’, Eidg. Materialprüfungs- und Forschungsanstalt (Empa), Dübendorf.Google Scholar
  27. Künniger, T., Richter, K., and Werner, F.: 2000, ‘Ökobilanzdaten von Kies, Zement und Beton’, Eidg. Materialprüfungs- und Forschungsanstalt (Empa), Dübendorf.Google Scholar
  28. Künniger, T., Werner, F., and Richter, K.: 2001, ‘Ökologische Bewertung von Kies, Zement und Beton in der Schweiz (Kurzfassung)’, Forschungs- und Arbeitsbericht 115/45, Schweizerische Materialprüfungs- und Forschungsanstalt (Empa), Dübendorf.Google Scholar
  29. Lim, B., Brown, S., and Schlamadinger, B.: 1999, ‘Carbon accounting for forest harvesting and wood products: Review and evaluation of different approaches’, Environ. Sci. Policy 2, 207–216.CrossRefGoogle Scholar
  30. Liski, J., Pussinen, A., Pingoud, K., Mäkipää, R., and Karjalainen, T.: 2001, ‘Which rotation length is favourable to mitigation of climate change’, Can. J. Forest Res. 31, 2004–2013.CrossRefGoogle Scholar
  31. Marcea, R. I. and Lau, K. K.: 1992, ‘Carbon dioxide implication of building materials’, J. Forest Eng. 3(2), 37–43.Google Scholar
  32. Marland, E. and Marland, G.: 2003, ‘The treatment of long-lived, carbon-containing products in inventories of carbon dioxide emissions to the atmosphere’, Environ. Sci. Policy 6(2), 139–152.CrossRefGoogle Scholar
  33. Marland, G. and Marland, S.: 1992, ‘Should we store carbon in trees’, Water Air Soil Pollut., Special Issue Natural Sinks of CO 2 64(1–2), 181–195.Google Scholar
  34. Marland, G. and Schlamadinger, B.: 1998, ‘Forests for carbon sequestration or fossil fuel substitution? A sensitivity analysis’, Biomass Bioenergy 13(6), 389–397.CrossRefGoogle Scholar
  35. Matthews, R. W., Nabuurs, G.-J., Alexeyev, V., Birsey, R. A., Fischlin, A., Maclaren, J. P., Marland, G., and Price, D. T.: 1996, ‘WG3 Summary: Evaluation the role of forest management and forest products in the carbon cycle’, in Forest Ecosystems, Forest Management and the Global Carbon Cycle, NATO ASI Series, Vol. I 40, Springer-Verlag, Berlin, Heidelberg, pp. 293–301.Google Scholar
  36. Micales, J. A. and Skog, K. E.: 1997, ‘The decomposition of forest products in landfills’, Int. Biodeterioration Biodegradation 39(2–3), 145–158.CrossRefGoogle Scholar
  37. Niles, J. and Schwarze, R.: 2001, ‘The value of careful carbon accounting in wood products’, Clim. Change 49(4), 371–376.CrossRefGoogle Scholar
  38. Pingoud, K. and Lehtilä, A.: 2002, ‘Fossil carbon emissions associated with carbon flows of wood products’, Mitigation and Adaptation Strategies for Global Change 7(1), 63–83.CrossRefGoogle Scholar
  39. Pingoud, K., Perälä, A. -L., and Pussinen, A.: 2001, ‘Carbon dynamics in wood products’, Mitigation and Adaptation Strategies for Global Change 6(2), 91–111.CrossRefGoogle Scholar
  40. Quetting, M., Wiegand, J., and Sell, J.: 1999, ‘Tiefenerhebung zu Entscheidungsmotiven und zum Image von Holz im Hochbau in der Schweiz’, Forschungs- und Arbeitsberichte 115/40, Eidg. Materialprüfungs- und Forschungsanstalt (Empa), Dübendorf.Google Scholar
  41. Richter, K. and Gugerli, H.: 1996, ‘Holz und Holzprodukte in vergleichenden Ökobilanzen’, Holz als Roh- und Werkstoff 54, 225–231.CrossRefGoogle Scholar
  42. SBSTA/UNFCCC: 2001, FCCC/SBSTA/2001/Misc.1: Issues related to emissions from forest harvesting and wood products; Submission from Parties. Retrieved from http://UNFCCC.int/resource/docs/2001/sbsta/misc01.pdf.
  43. SBSTA/UNFCCC: 2003a, FCCC/SBSTA/2003/Misc.1/Add.1: Good practice guidance and other information on land use, land-use change and forestry; implications of harvested wood products accounting; Submission from Parties; Addendum. Retrieved from http://UNFCCC.int/resource/docs/2003/sbsta/misc01a01.pdf.
  44. SBSTA/UNFCCC: 2003b, FCCC/SBSTA/2003/Misc.1/Add.2: Good practice guidance and other information on land use, land-use change and forestry; implications of harvested wood products accounting; Submission from Parties; Addendum. Retrieved from http://UNFCCC.int/resource/docs/2003/sbsta/misc01a02.pdf.
  45. SBSTA/UNFCCC: 2003c, FCCC/SBSTA/2003/Misc.1: Good practice guidance and other information on land use, land-use change and forestry; implications of harvested wood products accounting; Submission from Parties. Retrieved from http://UNFCCC.int/resource/docs/2003/sbsta/misc01.pdf.
  46. Sedjo, R. A.: 1989, ‘Forests to offset the greenhouse effect’, J. Forest. 87, 12–15.Google Scholar
  47. Sedjo, R. A.: 2002, ‘Wood materials used as a means to reduce greenhouse gases (GHGS): An examination of wooden utility poles’, Mitigation and Adaptation Strategies for Global Change 7, 191–200.CrossRefGoogle Scholar
  48. Skog, K. E. and Nicholson, G. A.: 1998, ‘Carbon cycling through wood products: The role of wood and paper products in carbon Sequestration’, Forest Prod. J. 48(7–8), 75–83.Google Scholar
  49. Suzuki, M., Tatsuo, O., and Okada, K.: 1995, ‘The estimation of energy consumption and CO2 emission due to housing construction in Japan’, Energy Build. 22(165–169).CrossRefGoogle Scholar
  50. Thompson, D. A. and Matthews, R. W.: 1989, ‘The storage of carbon in trees and timber’, Forestry Commission Research Information Note 160, Edinburgh.Google Scholar
  51. UNFCCC/TP: 2003, FCCC/TP/2003/7: Estimation, reporting and accounting of harvested wood products. Retrieved from http://UNFCCC.int/resource/docs/tp/tp0307.pdf.
  52. Werner, F., Künniger, T., Althaus, H. -J., and Richter, K.: 2003, Life cycle inventories of wood as fuel and construction material, Duebendorf, November 2002. Ecoinvent-Report No. 9, Centre for life cycle inventories in the ETH domain, Duebendorf.Google Scholar
  53. Werner, F. and Richter, K.: 1997, ‘Ökologische Untersuchung von Parkettfussböden’, Holz-Zbl. 123, 1759.Google Scholar
  54. Werner, F. and Richter, K.: 2001, ‘Lebenszyklusanalyse bei Fassaden’, in Innovative Fassaden, Tagung Baden-Baden, 7. und 8. November 2001, VDI-Bericht 1642. VDI-Gesellschaft Bautechnik, Düsseldorf, 243–253.Google Scholar
  55. Werner, F., Richter, K., Bosshart, S., and Frischknecht, R.: 1997, Ökologischer Vergleich von Innenbauteilen am Bsp. von Zargen aus Massivholz, Holzwerkstoff und Stahl. Empa/ETH-Forschungsbericht, Dübendorf, Zürich.Google Scholar
  56. Werner, F. and Scholz, R. W.: 2002, ‘Ambiguities in decision-oriented life cycle inventories; the role of mental models’, Int. J. LCA 7(6), 330–338.Google Scholar
  57. Werner, F.: in press, Ambiguities in Decision-Oriented Life Cycle Inventories; the Role of Mental Models and Values, Springer, Dordrecht.Google Scholar
  58. Wiegand, J. and Quetting, M.: 1999a, ‘Ergebnisse im Hochbau; Untersuchung über Entscheidungsmotive und Kenntnisse zu Holz’, SAH Bulletin CSRB 3(1999), 13–29.Google Scholar
  59. Wiegand, J. and Quetting, M.: 1999b, ‘Ergebnisse im übrigen Bauwesen und im Bereich Möbel; Untersuchung über Entscheidungsmotive und Kenntnisse zu Holz’, SAH Bulletin CSRB 3(1999), 30–35.Google Scholar
  60. Winjum, J. K., Brown, S., and Schlamadinger, B.: 1997, ‘Forest harvests and wood products: Sources and sinks of atmospheric carbon dioxide’, Forest Sci. 44, 271–284.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Frank Werner
    • 1
  • Ruedi Taverna
    • 2
  • Peter Hofer
    • 2
  • Klaus Richter
    • 3
  1. 1.Environment and DevelopmentZurich
  2. 2.GEO Partner AGZurich
  3. 3.Swiss Federal Laboratories for Materials Testing and Research (Empa)Duebendorf

Personalised recommendations