Skip to main content

Advertisement

Log in

Risk-Based Reanalysis of the Effects of Climate Change on U.S. Cold-water Habitat

  • Published:
Climatic Change Aims and scope Submit manuscript

Summary

A probabilistic risk assessment was conducted for the effects of future climate change on U.S. cold-water habitat. Damage functions for the loss of current cold-water fish habitat in the United States and the Rocky Mountain region were integrated with probability distributions for U.S. June/July/August (JJA) temperature change using Monte Carlo techniques. Damage functions indicated temperature thresholds for incipient losses (≥5%) of cold-water habitat in the United States and the Rocky Mountains of 0.6 and 0.4 C, respectively. Median impacts associated with different temperature distributions suggested habitat loss in 2025, 2050, and 2100 of approximately 10, 20, and 30%, respectively, for the United States and 20, 35, and 50%, respectively, in the Rocky Mountains. However, 2100 losses in excess of 60% and 90% were possible for the United States and the Rocky Mountains, respectively, albeit at low probabilities. The implementation of constraints on greenhouse gas emissions conforming to the WRE750/550/350 stabilization scenarios had little effect on reducing habitat loss out to 2050, but median effects in 2100 were reduced by up to 20, 30, and 60%, respectively. Increased focus on probabilistic risk assessment may be a profitable mechanism for enhancing understanding and communication of climate change impacts and, subsequently, risk management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, S., de Steiguer, J. E., Palmquist, R. B., and Holmes, T. P.: 2000, ‘Economic analysis of the potential impact of climate change on recreational trout fishing in the southern appalachian mountains: An application of a nested multinominal logit model’, Clim. Change 45, 493–509.

    Article  Google Scholar 

  • Allen, M. R. and Stainforth, D. A.: 2002, ‘Toward objective probabilistic climate forecasting’, Science 419, 229.

    Google Scholar 

  • Anand, P.: 2002, ‘Decision-making when science is ambiguous’, Science 295, 1839.

    Article  PubMed  Google Scholar 

  • Arnell, N. W., Cannell, M. G. R., Hulme, M., Kovats, R. S., Mitchell, J. F. B., Nicholls, R. J., Parry, M. L., Livermore, M. T. J., and White, A.: 2002, ‘The consequences of CO2 stabilization for the impacts of climate change’, Climatic Change 53, 413–446.

    Article  Google Scholar 

  • Dai, A., Wigley, T. M. L., Meehl, G. A., and Washington, W. M.: 2001, ‘Effects of stabilizing atmospheric CO2 on global climate in the next two centuries’, Geophys. Res. Lett. 28, 4511–4514.

    Article  Google Scholar 

  • Dessai, S. and Hulme, M.: 2003, Does Climate Policy Need Probabilities? Tyndall Centre for Climate Change Research, Working Paper 34, Norwich, UK.

  • Eaton, J. G. and Scheller, R. M.: 1996, ‘Effects of climate warming on fish thermal habitat in streams of the United States’, Limnol. Oceanogr., 41, 1109–1115.

    Article  Google Scholar 

  • Emans, H. J. B., Plassche, E. J. V. D., Canton, J. H., Okkerman, P. C., and Sparenburg, P. M.: 1993, ‘Validation of some extrapolation methods used for effect assessment’, Environ. Toxicol. Chem. 12, 2139–2154.

    Article  Google Scholar 

  • Etterson, J. R. and Shaw, R. G.: 2001, ‘Constraint to adaptive evolution in response to global warming,’ Science 294, 151–154.

    Article  PubMed  Google Scholar 

  • Forest, C. E., Stone, P. H., Sokolov, A. P., Allen, M. R., and Webster, M. D.: 2002, ‘Quantifying uncertainties in climate system properties with the use of recent climate observations’, Science 295, 113–117.

    Article  PubMed  Google Scholar 

  • Giorgi, F. and Mearns, L. O.: 2002, ‘Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “Reliability ensemble averaging” (REA) method’, J Climate 15, 1141–1158.

    Article  Google Scholar 

  • Giorgi, F. and Mearns, L. O.: 2003, ‘Probability of regional climate change based on the reliability ensemble averaging (REA) method’, Geophys. Res. Lett. 30, doi:10.1029/2003GL017130.

    Google Scholar 

  • Hansen, J. E.: 2005, ‘A slippery slope: How Much global warming constitutes “Dangerous anthropogenic interference’, Clim. Change 68, 269–279.

    Article  Google Scholar 

  • Hansen, J. E., Ruedy, R., Sato, M., Imhoff, M., Lawrence, W., Easterling, D., Peterson, T., and Karl, T.: 2001, ‘A closer look at united states and global surface temperature change’, J. Geophys. Res. 106, 23947–23963.

    Article  Google Scholar 

  • IPCC: 2000, Special Report on Emissions Scenarios, Special Report for Working Group III of the Intergovernmental Panel on Climate Change, N. Nakicenovic and Swart, R. (eds), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 570 pp.

  • IPCC: 2001, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, in J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.), Cambridge University Press, Cambridge, UK and New York, NY, USA, 881 pp.

  • IPCC: 2002, ‘Climate change and biodiversity’, in H. Gitay, A. Suárez, R. T. Watson, and D. J. Dokken (eds.), Technical Paper V, Intergovernmental Panel on Climate Change, Geneva, Switzerland, 86 pp.

  • Jones, R. N.: 2000, ‘Managing uncertainty in climate change projections—issues for impact assessment’, Clim. Change 45, 403–419.

    Article  Google Scholar 

  • Jones, R. N.: 2001, ‘An Environmental risk assessment/management framework for climate change impact assessments’, Nat. Hazards 23, 197–230.

    Article  Google Scholar 

  • Jones, R. N.: 2004, “Incorporating agency into climate change risk assessments’, Clim. Change 67, 13–26.

    Article  Google Scholar 

  • Jones, R. N. and Mearns, L. O.: 2005, “Assessing Future Climate Risks’, in B. Lim, E. Spanger-Siegfried, I. Burton, E. L. Malone, and S. Huq (eds.), Adaptation Policy Frameworks for Climate Change: Developing Strategies, Policies and Measures, United Nations Development Programme, Cambridge University Press, Cambridge, UK, pp. 119–143.

    Google Scholar 

  • Keleher, C. J. and Rahel, F. J.: 1996, ‘Thermal limits to salmonid distributions in the rocky mountain region and potential habitat loss due to global warming: A geographic information system (GIS) Approach’, Trans. Am. Fish. Soc. 125, 1–13.

    Article  Google Scholar 

  • Knutti, R., Stocker, T. F., Joos, F., and Plattner, G.-K.: 2002, ‘Constraints on radiative forcing and future climate change from observations and climate model ensembles’, Nature 416, 719-723.

    Article  PubMed  Google Scholar 

  • Kolar, C. S. and Lodge, D. M.: 2002, ‘Ecological predictions and risk assessment for alien fishes in North America’, Science 298, 1233–1236.

    Article  PubMed  Google Scholar 

  • Magnuson, J. J., Meisner, J. D., and Hill, D. K.: 1990, ‘Potential changes in the thermal habitat of great lakes fish after global climate warming’, Trans. Am. Fish. Soc. 119, 254–264.

    Article  Google Scholar 

  • Mastrandrea, M. D. and Schneider, S. H.: 2004, ‘Probabilistic integrated assessment of “dangerous” climate change’, Science 304, 571–575.

    Article  PubMed  Google Scholar 

  • Matthews, W. J. and Zimmerman, E. G.: 1990, ‘Potential effects of global warming on native fishes of the southern great plains and the Southwest’, Fisheries 15, 26–32.

    Article  Google Scholar 

  • Meisner, J. D.: 1990, ‘effect of climate warming on the southern margins of the native range of brook trout, Salvelinus fontinalis’, Can. J. Fish Aquat. Sci. 47, 1065–1070.

    Article  Google Scholar 

  • Meisner, J. D., Goodier, J. L., Regier, H. A., Shutter, B. J., and Christie, W. J.: 1987, ‘An assessment of the effects of climate warming on great lakes basin fishes’, J. Great Lakes Res. 13, 340–352.

    Article  Google Scholar 

  • Meyer, J. L., Sale, M. J., Mulholland, P. J., and Poff, N. L.: 1999, ‘Impacts of climate change on aquatic ecosystem functioning and health’, J. Am. Water Resour. Assoc. 35, 1373–1386.

    Article  Google Scholar 

  • Mohseni, O., Stefan, H. G., and Eaton, J. G.: 2003, ‘Global warming and potential changes in fish habitat in U.S. streams’, Clim. Change 59, 289–409.

    Article  Google Scholar 

  • Mohseni, O., Stefan, H. G., and Erikson, T. R.: 1998, ‘A nonlinear regression model for weekly stream temperatures’, Water Res. 34, 2685–2692.

    Article  Google Scholar 

  • Morgan, M. G. and Keith, D. W.: 1995, ‘Subjective judgments by climate experts’, Environ. Sci. Technol. 29, 468A-476A.

    Article  Google Scholar 

  • Moss, R. H.: 1995, ‘Avoiding “Dangerous” interference in the climate system: The role of values, science and policy’, Global Environ. Chang. 5, 3–6.

    Article  Google Scholar 

  • Murphy, J. M., Sexton, D. M., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., and Stainforth, D. A.: 2004, ‘Quantification of modeling uncertainties in a large ensemble of climate change simulations’, Nature 430, 768–772.

    Article  PubMed  Google Scholar 

  • NAST: 2000, Climate Change Impacts on the United States: The Potential Consequences of Climate Variability and Change, National Assessment Synthesis Team, U.S. Global Change Research Program, Cambridge University Press, New York, NY, 154 pp.

  • New, M., Hulme, M., and Jones, P. D.: 1999, ‘Representing twentieth-century space-time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology’, J Clim. 12, 829–856.

    Article  Google Scholar 

  • Novacek, M. J. and Cleland, E. E.: 2001, ‘The current biodiversity extinction event: Scenarios for mitigation and recovery’, Proc. Natl. Acad. Sci. USA 98, 5466–5470.

    Article  PubMed  Google Scholar 

  • Okkerman, P. C., Plassche, E. J. V. D., Emans, H. J. B., and Canton, J. H.: 1993, ‘Validation of some extrapolation methods with toxicity data derived from multiple species experiments’, Ecotox. Environ. Safe. 25, 341–359.

    Article  Google Scholar 

  • O'Neal, K.: 2002. Effects of Global Warming on Trout and Salmon in U.S. Streams, Defenders of Wildlife and National Resources Defense Council, Washington, DC.

  • O'Neill, B. C. and Oppenheimer, M.: 2002, ‘Dangerous climate impacts and the kyoto protocol’, Science 296, 1971–1972.

    Article  PubMed  Google Scholar 

  • Parry, M. L., Carter, T. R., and Hulme, M.: 1996, ‘What is dangerous climate change?’ Global Environ. Change 6, 1–6.

    Article  Google Scholar 

  • Pittock, A. B., Jones, R. N, and Mitchell, C. D.: 2001, ‘Probabilities will help us plan for climate change,’ Nature 413, 249.

    Article  Google Scholar 

  • Poff, N. L., Brinson, M. M., Day, J. W. Jr.: 2002, Aquatic Ecosystems and Global Climate Change: Potential Impacts on Inland Freshwater and Coastal Wetland Ecosystems in the United States. Pew Center on Global Climate Change, Arlington, VA.

  • Rahel, F. J., Keleher, C. J., and Anderson, J. L.: 1996, ‘Potential habitat loss and population fragmentation for cold water fish in the North Platte river drainage of the Rocky Mountains: Response to climate warming’, Limnol. Oceanogr. 41, 1116–1123.

    Article  Google Scholar 

  • Reilly, J., Stone, P. H., Forest, C. E., Webster, M. D. Jacoby, H. D., and Prinn, R. G.: 2001, ‘Uncertainty and climate change assessments’, Science 293, 430–433.

    Article  Google Scholar 

  • Risbey, J. S.: 2004, ‘Agency and the assignment of probabilities to greenhouse emissions scenarios’, Clim. Change 67, 37–42.

    Article  Google Scholar 

  • Sala, O. E., Chapin, F. S. III, Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M., and Wall, D. H.: 2000, ‘Global biodiversity scenarios for the year 2100’, Science 287, 1770–1774.

    Article  PubMed  Google Scholar 

  • Santer, B. D., Wigley, T. M. L., Schlesinger, M. E., and Mitchell, J. F. B.: 1990, Developing Climate Scenarios from Equilibrium GCM Results, Max-Planck-Institute für Meterologie, Report No. 47, Hamburg, Germany.

    Google Scholar 

  • Schneider, S. H.: 2001, ‘What is “dangerous” climate change?’ Nature 411, 17–19.

    Article  PubMed  Google Scholar 

  • Stainforth, D. A., Alna, T., Christensen, C., Collins, M., Faull, N., Frame, D. J., Kettleborough, J. A., Knight, S., Martin, A., Murphy, J. M., Plani, C., Sexton, D., Smith, L. A., Spicer, R. A., Thorpe, A. J., and Allen, A. R.: 2005, ‘Uncertainty in predictions of the climate response to rising levels of greenhouse gases’, Nature 433, 403–406.

    Article  PubMed  Google Scholar 

  • Stefan, H. G. and Preud'homme, E. B. 1993, ‘Stream temperature estimation from air temperature’, Water Resour. Bull. 29, 1–19.

    Google Scholar 

  • Stillman, J. H.: 2003, ‘Acclimation capacity underlies susceptibility to climate change,’ Science 301, 65.

    Article  PubMed  Google Scholar 

  • Stott, P. A. and Kettleborough, J. A., 2002, ‘Origins and estimates of uncertainty in predictions of twenty-first century temperature rise’, Nature 416, 723–726.

    Article  PubMed  Google Scholar 

  • Swart, R., Mitchell, J., Morita, T., and Raper, S.: 2002, ‘Stabilisation scenarios for climate impact assessment’, Global Environ. Chang. 12, 155–165.

    Article  Google Scholar 

  • Swart, R. J. and Vellinga, P.: 1994, ‘The “ultimate objective” of the framework convention on climate change requires a new approach in climate change research’, Clim. Change 26, 343–349.

    Article  Google Scholar 

  • Tebaldi, C., Mearns, L. O., Nychka, D., and Smith, R. L.: 2004, ‘Regional probabilities of precipitation change: a bayesian analysis of multimodel simulations’, Geophys. Res. Lett. 31, doi:10.1029/2004GL021276.

    Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. R. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., and Williams, S. E.: 2004, ‘Extinction risk from climate change’, Nature 427, 154–148.

    Article  PubMed  Google Scholar 

  • Titus, J. G. and Narayanan, V.: 1995, The Probability of Sea Level Rise, EPA Report 230-R-95-008, p. 186.

    Google Scholar 

  • Titus, J. G. and Narayanan, V.: 1996, ‘The risk of sea level rise’, Clim. Change 33, 151–212.

    Article  Google Scholar 

  • Toth, F. L., Cramer, W., and Hizsnyik, E.: 2000, ‘Climate impact response functions: An introduction’, Clim. Change 46, 225–246.

    Article  Google Scholar 

  • UNFCCC: 1992, United Nations Framework Convention on Climate Change, United Nations, New York, NY, 33 pp.

  • U. S. DOI: 1997, 1996 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation, U. S. Department of the Interior, Fish and Wildlife Service and U.S. Department of Commerce, Bureau of the Census, Washington, D.C.

    Google Scholar 

  • U.S. EPA: 1995, Ecological Impacts from Climate Change: An Economic Analysis of Freshwater Recreational Fishing, U.S. Environmental Protection Agency, Office of Policy Planning and Evaluation, EPA 220-R-004, Washington, D.C.

    Google Scholar 

  • Visser, H., Folkert, R. J. M., Hoekstra, J., and de Wolff, J. J.: 2000, ‘Identifying key sources of uncertainty in climate change projections’, Clim. Change 45, 421–457.

    Article  Google Scholar 

  • Webster, M. D., Babiker, M., Mayer, M., Reilly, J. M., Harnisch, J., Hyman, R., Sarofim, M. C., and Wang, C.: 2002, ‘Uncertainty in emissions projections for climate models’, Atmos. Environ. 36, 3659–3670.

    Article  Google Scholar 

  • Webster, M., Forest, C., Reilly, J., Babiker, M., Kicklighter, D., Mayer, M., Prinn, R., Sarofim, M., Sokolov, A., Stone, P., and Wang, C.: 2003, ‘Uncertainty analysis of climate change and policy response’, Clim. Change 61, 295–320.

    Article  Google Scholar 

  • Wigley, T. M. L.: 1999, The Science of Climate Change: Global and U.S. Perspectives, Pew Center on Global Climate Change, Arlington, VA.

    Google Scholar 

  • Wigley, T. M. L.: 2005, ‘The climate change commitment’, Science 307, 1766–1769.

    Article  PubMed  Google Scholar 

  • Wigley, T. M. L. and Raper, S. C. B.: 2001, ‘Interpretations of high projections for global-mean warming’, Science 293, 451–454.

    Article  PubMed  Google Scholar 

  • Wigley, T. M. L., Richels, R., and Edmonds, J. A.: 1996, ‘Economic and environmental choices in the stabilization of atmospheric CO2 concentrations’, Nature 379, 240–243.

    Article  Google Scholar 

  • Willows, R. and Connell, R.: 2003: Climate Adaptation: Risk, Uncertainty and Decision-Making, UK Climate Impacts Programme, Department for Environment, Food, and Rural Affairs, Oxford, UK, 154 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin L. Preston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preston, B.L. Risk-Based Reanalysis of the Effects of Climate Change on U.S. Cold-water Habitat. Climatic Change 76, 91–119 (2006). https://doi.org/10.1007/s10584-005-9014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-005-9014-1

Keywords

Navigation