Climatic Change

, Volume 74, Issue 1–3, pp 253–267 | Cite as

Variations in Vegetation Net Primary Production in the Qinghai-Xizang Plateau, China, from 1982 to 1999



Vegetation net primary production (NPP) derived from a carbon model (Carnegie–Ames–Stanford Approach, CASA) and its interannual change in the Qinghai-Xizang (Tibetan) Plateau were investigated in this study using 1982–1999 time series data sets of normalized difference vegetation index (NDVI) and paired ground-based information on vegetation, climate, soil, and solar radiation. The 18-year averaged annual NPP over the plateau was 125 g C m−2 yr−1, decreasing from the southeast to the northwest, consistent with precipitation and temperature patterns. Total annual NPP was estimated between 0.183 and 0.244 Pg C over the 18 years, with an average of 0.212 Pg C (1 Pg = 1015 g). Two distinct periods (1982–1990 and 1991–1999) of NPP variation were observed, separated by a sharp reduction during 1990–1991. From 1982 to 1990, annual NPP did not show a significant trend, while from 1991 to 1999 a marked increase of 0.007 Pg C yr−2 was observed. NPP trends for most vegetation types resembled that of the whole plateau. The largest annual NPP increase during 1991–1999 appeared in alpine meadows, accounting for 32.3% of the increment of the whole region. Changes in solar radiation and temperature significantly influenced NPP variation, suggesting that solar radiation may be one of the major factors associated with changes in NPP.


Normalize Difference Vegetation Index Advanced Very High Resolution Radiometer Alpine Meadow Advanced Very High Resolution Radiometer Global Change Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asner, G. P.: 2000, ‘Contribution of multi-view angle remote sensing to land-surface and biogeochemical research’, Remote Sens. Environ. 18, 137–162.Google Scholar
  2. Behrenfeld, M. J., Randerson, J. T., McClain, C. R., Feldman, G. C., Los, S. O., Tucker, C. J., Falkowski, P. G., Field, C. B., Frouin, R., Esaias, W. E., Kolber, D. D., and Pollack, N. H.: 2001, ‘Biospheric primary production during an ENSO transition’, Science 291, 2594–2597.CrossRefGoogle Scholar
  3. Braswell, H., Schimel, S., Linder, E., and Moore III: 1997, ‘The response of global terrestrial ecosystems to interannual temperature variability’, Science 278, 868–872.CrossRefGoogle Scholar
  4. Cao, M. K., Prince, S. D., Li, K. R., Tao, B., Small, J., and Shao, X. M.: 2003, ‘Response of terrestrial carbon uptake to climate interannual variability in China’, Global Change Biol. 9, 536–546.CrossRefGoogle Scholar
  5. Cha, L. S.: 1995, ‘Research on the variation of solar radiation in northwest China’, Arid Land Geogr. 18, 8–13.Google Scholar
  6. Cramer, W., Kicklighter, D. W., Bondeau, A., Moore, B., Churkina, C., Nemry, B., Ruimy, A., and Schloss, A. L.: 1999, ‘Comparing global models of terrestrial net primary productivity (NPP): Overview and key results’, Global Change Biol. 5(Suppl. 1), 1–15.CrossRefGoogle Scholar
  7. Deng, Q.: 1986, ‘Map of soil texture of China’, in Institute of Soil Science, Academia Sinica (ed.), The Soil Atlas of China, Cartographic Publishing House, Beijing, pp. 23–24.Google Scholar
  8. Editorial Committee for Physical Geography of China: 1985, Physical Geography of China: Climate, Science Press, Beijing.Google Scholar
  9. Editorial Committee for Vegetation of China: 1980, Vegetation of China, Science Press, Beijing.Google Scholar
  10. Fang, J. Y., Piao, S. L., Tang, Z. Y., Peng, C. H., and Ji, W.: 2001a, ‘Relationship between interannual variability in net primary production and precipitation’, Science 293, 1723a.Google Scholar
  11. Fang, J. Y., Chen, A. P., Peng, C. H., Zhao, S. Q., and Ci, L. J., 2001b, ‘Changes in forest biomass carbon storage in China between 1949 and 1998’, Science 292, 2320–2322.CrossRefGoogle Scholar
  12. Fang, J. Y., Piao, S. L., Field, C. B., Pan, Y. D., Guo, Q. H., Zhou, L. M., Peng, C. H., and Tao, S.: 2003, ‘Increasing net primary production in China from 1982 to 1999’, Front. Ecol. Environ. 1(6), 293–297.CrossRefGoogle Scholar
  13. Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: 1998, ‘Primary production of the biosphere: Integrating terrestrial and oceanic components’, Science 281, 237–240.CrossRefGoogle Scholar
  14. Field, C. B., Randerson, J. T., and Malmström, C. M.: 1995, ‘Global net primary production: Combing ecology and remote sensing’, Remote Sens. Environ. 51, 74–88.CrossRefGoogle Scholar
  15. Gutman, G.: 1999, ‘On the use of long-term global data of land reflectances and vegetation indices derived from the advanced very high resolution radiometer’, J. Geophys. Res. 104, 6241–6255.CrossRefGoogle Scholar
  16. Hansen, J., Ruedy, R., Sato, M., and Reynolds, R.: 1996, ‘Global surface air temperature in 1995: Return to pre-Pinatubo level’, Geophys. Res. Lett. 23, 1665–1668.CrossRefGoogle Scholar
  17. Hicke, J. A., Asner, G. P., Randerson, J. T., Tucker, C., Los, S., Birdsey, R., Jenkins, J. C., Field, C., and Holland, E.: 2002, ‘Satellite-derived increases in net primary productivity across North America, 1982–1998’, Geophys. Res. Lett. 29, doi: 10.1029/2001GL013578.Google Scholar
  18. Holben, B. N.: 1986, ‘Characteristics of Maximum Value Composite images from temporal AVHRR data’, Int. J. Remote Sens. 7, 1417–1434.CrossRefGoogle Scholar
  19. Ichii, K., Matsui, Y., Yamaguchi, Y., and Ogawa, K.: 2001, ‘Comparison of global net primary production trends obtained from satellite-based normalized difference vegetation index and carbon cycle model’, Global Biogeochem. Cycles 15, 351–363.CrossRefGoogle Scholar
  20. Institute of Geography, Chinese Academy of Sciences: 1986, Digitized Vegetation Map of China, National Laboratory for GIS and Remote Sensing, Beijing.Google Scholar
  21. Intergovernmental Panel on Climate Change (IPCC): 2001, Climate Change 2001: Impact, Adaptation, and Vulnerability, Cambridge University Press, Cambridge.Google Scholar
  22. Keeling, C. D., Chin, J. F. S., and Whorf, T. P.: 1996, ‘Increased activity of northern vegetation inferred from atmospheric CO2 measurements’, Nature 382, 146–149.CrossRefGoogle Scholar
  23. Li, X. W., Li, W. L., and Zhou, X. Y.: 1998, ‘Analysis of the solar radiation variation of China in recent 30 years’, Quart. J. Appl. Meteorol. 9, 24–31.Google Scholar
  24. Li, W. H., Wang, Q. J., Luo, T. X., Luo, J., Zhang, X. Z., and Lin, Z. H.: 1998, ‘Biomass and productivity of ecosystems in Qinghai-Xizang Plateau’, in Li, W. H. and Zhou, X. M. (eds.), Ecosystems of Qinghai-Xizang Plateau and Approach for Their Sustainable Management, Guangdong Science and Technology Press, Guangzhou, pp. 183–250.Google Scholar
  25. Liepert, B. G.: 2002, ‘Observed reductions of surface solar radiation at sites in the United States and worldwide’, Geophys. Res. Lett. 29, article no. 1421.Google Scholar
  26. Lin, Z. Y. and Zhao, X. Y.: 1996, ‘Spatial characteristics of changes in temperature and precipitation of the Qinghai-Xizang (Tibet) plateau’, Sci. China Ser. D Earth Sci. 39, 442–448.Google Scholar
  27. Los, S. O., Collatz, G. J., Bounoua, L., Sellers, P. J., and Tucker, C. J.: 2001, ‘Global interannual variations in sea surface temperature and land surface vegetation, air temperature, and precipitation’, J. Clim. 14, 1535–1549.CrossRefGoogle Scholar
  28. Lucht, W., Prentice, L. C., Myneni, R. B., Sitch, S., Friedlingstein, P., Cramer, W., Bousquet, P., Buermann, W., and Smith, B.: 2002, ‘Climatic control of the high-latitude vegetation greening trend and Pinatubo effect’, Science 296, 1687–1689.CrossRefGoogle Scholar
  29. Luo, T. X., Li, W. H., and Zhu, H. Z.: 2002, ‘Estimated biomass and productivity of natural vegetation on the Tibetan Plateau’, Ecol. Appl. 12(4), 980–997.CrossRefGoogle Scholar
  30. Malmström, C. M., Thompson, M. V., Juday, G. P., Los, S. O., Randerson, J. T., and Field, C. B.: 1997, ‘Interannual variation in global-scale net primary production: Testing model estimates’, Global Biogeochem. Cycles 11: 367–392.CrossRefGoogle Scholar
  31. Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore, B., Vorosmarty, C. J., and Schloss, A. L.: 1993, ‘Global climate change and terrestrial net primary production’, Nature 363, 34–240.CrossRefGoogle Scholar
  32. Minnis, P., Harrison, E. F., Stowe, L. L., Gibson, G. G., Denn, F. M., Doelling, D. R., and Smith, W. L.: 1993, ‘Radiative climate forcing by the mount Pinatubo eruption’, Science 259, 1411–1415.CrossRefGoogle Scholar
  33. Monteith, J. L.: 1977, ‘Climate and efficiency of crop production in Britain [J]’, Trans. R. Soc. Lond. Ser. B 281, 271–294.Google Scholar
  34. Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R.: 1997, ‘Increased plant growth in the northern high latitudes from 1981–1991’, Nature 386, 698–702.CrossRefGoogle Scholar
  35. Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., and Running, S. W.: 2003, ‘Climate-driven increases in global terrestrial net primary production from 1982 to 1999’, Science 300, 1560–1563.CrossRefGoogle Scholar
  36. Ni, J.: 2000, ‘A simulation of biomes on the Tibetan plateau and their responses to global climate change’, Mt. Res. Dev. 20, 80–99.CrossRefGoogle Scholar
  37. Pacala, S. W., Hurtt, G. C., Baker, D., Peylin, P., Houghton, R. A., Birdsey, R. A., Heath, L., Sundquist, E. T., Stallard, R. F., Ciais, P., Moorcroft, P., Caspersen, J. P., Shevliakova, E., Moore, B., Kohlmaier, G., Holland, E., Gloor, M., Harmon, M. E., Fan, S. M., Sarmiento, J. L., Goodale, C. L., Schimel, D., and Field, C. B.: 2001, ‘Consistent land- and atmosphere-based US carbon sink estimates’, Science 292, 2316–2320.CrossRefGoogle Scholar
  38. Peng, C. H. and Apps, M. J.: 1999, ‘Modelling the response of net primary productivity (NPP) of boreal forest ecosystems to changes in climate and fire disturbance regimes’, Ecol. Model. 122, 225–238.CrossRefGoogle Scholar
  39. Piao, S. L., Fang, J. Y., Zhou, L. M., Guo, Q. H., Henderson, M., Ji, W., Li, Y., and Tao, S.: 2003, ‘Interannual variations of monthly and seasonal NDVI in China from 1982 to 1999’, J. Geophys. Res. Atmos. 108, doi: 10.1029/2002JD002848.Google Scholar
  40. Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., and Klooster, S. A.: 1993, ‘Terrestrial ecosystem production: A process model based on global satellite and surface data’, Global Biogeochem. Cycles 7, 811–841.CrossRefGoogle Scholar
  41. Potter, C. S., Klooster, S., and Brooks, V.: 1999, ‘Interannual variability in terrestrial net primary production: Exploration of trends and controls on regional to global scales’, Ecosystems 2, 36–48.CrossRefGoogle Scholar
  42. Running, S. W., Thornton, P. E., Nemani, R., and Glassy, J.: 2000, ‘Global terrestrial gross and net primary productivity from the earth observing system’, in Sala, O. E., Jackson, R. B., Mooney, H. A. and Howarth, R. W. (eds.), Methods in Ecosystem Science, Springer, New York, pp. 44–57.Google Scholar
  43. Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B. H., Apps, M. J., Baker, D., Bondeau, A., Canadell, J., Churkina, G., Cramer, W., Denning, A. S., Field, C. B., Friedlingstein, P., Goodale, C., Heimann, M., Houghton, R. A., Melillo, J. M., Moore, B., Murdiyarso, D., Noble, I., Pacala, S. W., Prentice, I. C., Raupach, M. R., Rayner, P. J., Scholes, R. J., Steffen, W. L., and Wirth, C.: 2001, ‘Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems’, Nature 414, 169–172.CrossRefGoogle Scholar
  44. Schimel, D., Melillo, J., Tian, H. Q., McGuire, A. D., Kicklighter, D. M., Kittel, T., Rosenbloom, N., Running, S., Thornton, P., Ojima, D., Parton, W., Kelly, R., Sykes, M., Neilson, R., and Rizzo, B.: 2000, ‘Contribution of increasing CO2 and climate to carbon storage by ecosystems in the united states’, Science 287, 2004–2006.CrossRefGoogle Scholar
  45. Sellers, P. J., Meeson, B. W., Hall, F. G., Asrar, G., Murphy, R. E., Schiffer, R. A., Brethrton, F. P., Dickinson, R. E., Ellingson, R. G., Filed, C. B., Huemmrich, K. F., Justice, C. O., Melack, J. M., Roulet, N. T., Schimel, D. S., and Try, P. D.: 1995, ‘Remote sensing of the land surface for studies of global change: Models–algorithms–experiments’, Remote Sens. Environ. 51, 3–26.CrossRefGoogle Scholar
  46. Slayback, D., Pinzon, J., Los, S., and Tucker, C.: 2003, ‘Northern Hemisphere photosynthetic trends 1982–1999’, Global Change Biol. 9, 1–15.CrossRefGoogle Scholar
  47. Stowe, L. L., Garey, R. M., and Pellegrino, P. P.: 1992, ‘Monitoring the MT. Pinatubo aerosol layer with NOAA/11AVHRR data’, Geophys. Res. Lett. 19, 159–162.CrossRefGoogle Scholar
  48. Tucker, C. J., Newcomb, W. W., and Dregne, A. E.: 1994, ‘AVHRR data sets for determination of desert spatial extent’, Int. J. Remote Sens. 15, 3547–3566.Google Scholar
  49. Tucker, C. J., Slayback, D. A., Pinzon, J. E., Los, S. O., Myneni, R. B., and Taylor, M. G.: 2001, ‘Higher northern latitude NDVI and growing season trends from 1982 to 1999’, Int. J. Biometeorol. 45, 184–190.CrossRefGoogle Scholar
  50. Yao, T. D., Liu, X. D., Wang, N. L., and Shi, Y. F.: 2000, ‘Amplitude of climatic changes in Qinghai-Tibetan Plateau’, Chin. Sci. Bull. 45, 1236–1243.CrossRefGoogle Scholar
  51. Zhang, X. F., Chen, D., Fu, X. J., and Zheng, Y. H.: 1999, ‘Analysis of the regularity and forming reasons of the solar radiation variation of Henan in recent 40 years’, Meteorol. Month. 25, 21–25.Google Scholar
  52. Zhao, S. Q.: 1994, Geography of China: Environment, Resources, Population and Development, Willey, New York.Google Scholar
  53. Zhou, L. M., Kaufmann, R. K., Tian, Y., Myneni, R. B., and Tucker, C. J.: 2003, ‘Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999’, J. Geophys. Res. Atmos. 108(D1), doi: 10.1029/2002JD002510.Google Scholar
  54. Zhou, L. M., Tucker, C. J., Kaufmann, R. K., Slayback, D., Shabanov, N. V., and Myneni, R. B.: 2001, ‘Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999’, J. Geophys. Res. Atmos. 106(D17), 20069–20083.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Ecology, College of Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of EducationPeking UniversityBeijingChina

Personalised recommendations