Climatic Change

, Volume 69, Issue 1, pp 7–25 | Cite as

Climate Change Impacts for the Conterminous USA: An Integrated Assessment

Part 1. Scenarios and Context
  • Steven J. Smith
  • Allison M. Thomson
  • Norman J. Rosenberg
  • R. Cesar Izaurralde
  • Robert A. Brown
  • Tom M. L. Wigley


As carbon dioxide and other greenhouse gases accumulate in the atmosphere and contribute to rising global temperatures, it is important to examine how derivative changes in climate may affect natural and managed ecosystems. In this series of papers, we study the impacts of climate change on agriculture, water resources and natural ecosystems in the conterminous United States using twelve scenarios derived from General Circulation Model (GCM) projections to drive biophysical impact models. These scenarios are described in this paper. The scenarios are first put into the context of recent work on climate-change by the IPCC for the 21st century and span two levels of global-mean temperature change and three sets of spatial patterns of change derived from GCM results. In addition, the effect of either the presence or absence of a CO2 “fertilization effect” on vegetation is examined by using two levels of atmospheric CO2 concentration as a proxy variable. Results from three GCM experiments were used to produce different regional patterns of climate change. The three regional patterns for the conterminous United States range from: an increase in temperature above the global-mean level along with a significant decline in precipitation; temperature increases in line with the global-mean with an average increase in precipitation; and, with a sulfate aerosol effect added to in the same model, temperature increases that are lower than the global-mean. The resulting set of scenarios span a wide range of potential climate changes and allows examination of the relative importance of global-mean temperature change, regional climate patterns, aerosol cooling, and CO2 fertilization effects.


General Circulation Model Climate Change Impact Regional Pattern Sulfate Aerosol Fertilization Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, L. H., Valle, R. R., Jones, J. W., and Jones, P. H.: 1998, ‘Soybean leaf water potential responses to carbon dioxide and drought’, Agron. J. 90, 375–383.CrossRefGoogle Scholar
  2. Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Allen, P. M.:1999, ‘Continental scale simulation of the hydrologic balance’, J. Am. Water Resour. Assoc. 35, 1037–1051.Google Scholar
  3. Bowes, G.: 1993, ‘Facing the inevitable: Plants and increasing atmospheric CO2’, Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 309–332.Google Scholar
  4. Cubasch, U., Meehl, G. A., Boer, G. J., Stouffer, R. J., Dix, M., Noda, A., Senior, C. A., Raper, S., and Yap, K. S.: 2002, ‘Projections of future climate change’, in Houghton, J. T., Ding, Y., Griggs, D. J., and Noguer, M. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK.Google Scholar
  5. Drake, B. G., Muehe, M. S., Peresta, G., Gonzalez, M. A., Meler and Matamala, R.: 1996, ‘Acclimation of photosynthesis, respiration and ecosystem carbon flux of a wetland on Chesapeake Bay, Maryland to elevated atmospheric CO2 concentration’, Plant and Soil 187, 111–118.Google Scholar
  6. Dai, A., T. M. L. Wigley, B. A. Boville, J. T. Kiehl and L. E. Buja: 2000, ‘Climates of the twentieth and twenty first centuries simulated by the NCAR Climate System Model’, J. Climate 14, 485–519.Google Scholar
  7. Haxeltine, A. and Prentice, I. C.:1996, ‘BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types’, Global Biogeochem. Cycles 10, 693–709.Google Scholar
  8. Hulme, M., Jiang, T., and Wigley, T. M. L.:1995, SCENGEN: A Climate Change Scenario Generator: User Manual. Norwich, U.K., Climatic Research Unit, University of East Anglia: p. 38.Google Scholar
  9. Kimball, B. A.: 1983, ‘Carbon dioxide and agricultural yield: An assemblage and analysis of 770 prior observations.’ Agron. J. 75, 779–788.CrossRefGoogle Scholar
  10. Kimball, B. A., Pinter, P. J., Garcia, R. L., LaMorte, R. L., Wall, G. W., Hunsaker, D. J., Wechsung, G., Wechsung, F., and Kartschall, T.: 1995, ‘Productivity and water use of wheat under free-air CO2 enrichment’, Global Change Biol. 1, 429–442.Google Scholar
  11. Makino, A. and Mae, T.: 1999, ‘Photosynthesis and plant growth at elevated levels of CO2’, Plant Cell Physiol. 40(10), 999–1006.Google Scholar
  12. Maroco, J. P., Edwards, G. E., and Ku, M. S. B.:1999, ‘Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide’, Planta 210, 115–125.Google Scholar
  13. Mauney, J. R., Kimball, B. A., Pinter, P. J., Lamorte, R. L., Lewin, K. F., Nagy, J., and Hendrey, G. R.:1994, ‘Growth and yield of cotton response to a free-air carbon-dioxide enrichment (FACE) environment’, Agric. Forest Meteorol. 70, 49–67.Google Scholar
  14. McAveney, B. J., Colman, R., Fraser, J. F., and Dhani, R. R.:1991, The Response of the BMRC AGCM to a Doubling of CO 2, Bureau of Meteorology Research Centre (BMRC) Technical Memorandum No. 3. Melbourne, Australia.Google Scholar
  15. Mitchell, J. F. B., Karoly, D. J., Hegerl, G. C., Zwiers, F. W., Allen, M. R., and Marengo, J.: 2002, ‘Detection of climate change and attribution of causes’ in Houghton, J. T., Ding, Y., Griggs, D. J., and Noguer, M. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, U.K.Google Scholar
  16. N.Nakicenovic and Swart R.(eds.): 2000, Special Report on Emissions Scenarios, Cambridge University Press, Cambridge, U.K. p. 612.Google Scholar
  17. Oechel, W. C., Cowles, S., Grulke, N., Hastings, S. J., Lawrence, B., Prudhomme, T., Riechers, G., Strain, B., Tissue, D., and Vourlitis, G.:1994, ‘Transient nature of CO2 fertilization in Artic Tundra’, Nature 371, 500–503.Google Scholar
  18. Oren, R., Ellsworth, D. S., Johnsen, K. H., Phillips, N., Ewers, B. E., Maier, C., Schafer, K. V. R., McCarthy, H., Hendrey, G., McNulty, S. G., and Katul, G. G.:2001, ‘Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere’, Nature 411, 469–472.Google Scholar
  19. Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quéré, C., Scholes, R. J., and Wallace, D. W. R.:2002, ‘The Carbon Cycle and Atmospheric Carbon Dioxide’ in Houghton, J. T., Ding, Y., Griggs, D. J., and Noguer, M. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK.Google Scholar
  20. Rogers, H. H., Prior, S. A., Runion, G. B., and Mitchell, R. J.:1996, ‘Root to shoot ratio of crops as influenced by CO2’, Plant and Soil 187, 229–248.Google Scholar
  21. Schlesinger, M. E.:1997, ‘Geographical scenarios of greenhouse-gas and anthropogenic -sulfate-aerosol induced climate changes’, Report for Energy Modeling Forum (EMF-14). University of Illinois, Urbana-Champagne, U.S.A., p. 85.Google Scholar
  22. Wigley, T. M. L. and Raper, S. C. B.:2001, ‘Interpretation of high projections for global-mean warming’, Science 293, 451.Google Scholar
  23. Williams, J. R.: 1995, ‘The EPIC model’ in Singh, V. P. (ed.), Computer models in watershed hydrology, Highlands Ranch, CO, Water Resources Publication, pp. 909–1000.Google Scholar
  24. J. R. Williams, P. T.Dyke, W. W.Fuchs, V. W.Benson, O. W.Rice, and Taylor E. D.: 1990, EPIC–Erosion Productivity Impact Calculator: 2. User Manual, U.S. Department of Agriculture Technical Bulletin No. 1768. USDA-ARS, Temple, Texas, p. 127.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Steven J. Smith
    • 1
  • Allison M. Thomson
    • 1
  • Norman J. Rosenberg
    • 1
  • R. Cesar Izaurralde
    • 1
  • Robert A. Brown
    • 2
  • Tom M. L. Wigley
    • 3
  1. 1.Joint Global Change Research InstituteMarylandU.S.A.
  2. 2.Independent Project AnalysisRestonU.S.A.
  3. 3.National Center for Atmospheric ResearchBoulderU.S.A.

Personalised recommendations