Application of pulse decay discrimination liquid scintillation counting for indoor radon measurement

  • H. Bem
  • M. Ostrowska
  • E. M. Bem
Part 1 Radionuclides in the Environment, Radioecology


The pulse decay discrimination (PDD) liquid scintillation technique has been applied to optimise radon counting by the Pico-Rad method. A dermination limit (with 10% relative error) of 4.8 Bqm−3 for indoor radon measurement has been achieved for optimal PDD setting with a radon elution cocktail containing 20% (v/v) of Ultima Gold AB in Instafluor. From a practical point of view this procedure allows a shortening of the counting time to 1 hour after 48 hours exposure to detectors. This method has been applied to indoor radon determinations in 626 places (municipal offices and private dwellings) in the Lódz region. These measureents resulted in an average concentration of 21.4 Bqm−3 and a median value of 15.1 Bqm−3. Analysis of the data indicates that most indoor radon comes from the underlying soil, which contains relatively little226Ra (10–20 Bqkg−1).


Radon Radon Concentration Separation Mode Indoor Radon Annual Effective Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    J. H. Lubin and J. D. Boice, J. Nat. Cancer Inst.89 (1997) 49.CrossRefGoogle Scholar
  2. [2]
    F. Schönhofer, K. Pock and H. Friedman: J. Radioanal. Nucl. Chem., Art.193 (1995) 337.CrossRefGoogle Scholar
  3. [3]
    H. Bem, T. Domanski, Y. Y. Bakir and S. Al Zenki:in Proc. Int. Conf. IRPA 9 Vienna, 1996, Vol. 2 (1996), p. 101.Google Scholar
  4. [4]
    J. Maringer et al.:in Proc. IRPA Symp. Prague, 1997, (Ed. J. Sabol) Prague, 1998, p. 150.Google Scholar
  5. [5]
    L. A. Currie: Anal. Chem.40 (1968) 586CrossRefGoogle Scholar
  6. [6]
    L. Salonen: Sci. Total Environ.130/131, (1993) 23.CrossRefGoogle Scholar
  7. [7]
    J. D. Spalding and J. E. Noakes:in Liquid Scintillation Spectrometry, Tucson, 1992, (Eds. J. E. Noakes, F. Schönhofer and M. A. Polach), Radiocarbon, 1993, p. 373.Google Scholar
  8. [8]
    S. Möbius, P. Kamolchote, T. L. Ramamonjisoa and M. Yang:in Liquid Scintillation Spectrometry, Tucson, 1992 (Eds. J. E. Noakes, F. Schönhofer and M. A. Polach), Radiocarbon, 1993, p. 413.Google Scholar
  9. [9]
    H. Bem, Y. Y. Bakir and F. Bou-Rabee: J. Radioanal. Nucl. Chem., Lett.186 (1994) 119.CrossRefGoogle Scholar
  10. [10]
    W. J. McDowell:in Proc.Liquid Scintillation Spectrometry, Glasgow, 1994, (Eds. G. T. Cook, D. D. Harkness, A. B. Mackenzie, B. F. Miller and E. M. Scott), Radiocarbon, 1996, p. 327.Google Scholar
  11. [11]
    T. Oikari, H. Kojola, J. Nurmi and L. Kaihola, Appl. Radiat. Isot.38 (1987) 875.CrossRefGoogle Scholar
  12. [12]
    K. Mamont-Ciesla et al.:in Proc. International Conference onTechnologically Enhanced Natural Radiation, Szczyrk, Poland, 1996, p. 333.Google Scholar
  13. [13]
    J. Vaupotic, M. Szymula, J. Solecki, S. Chibowski and I. Kobal: Health Phys.64 (1993) 422.Google Scholar
  14. [14]
    H. Bem and P. Wieczorkowski, unpublished results.Google Scholar
  15. [15]
    International Atomic Energy Agency:Basic Safety Standards for Radiation Protection. Safety Series No. 115 1, Viena, 1994, p. 100.Google Scholar

Copyright information

© Institute of Physics, Acad. Sci. CR 1999

Authors and Affiliations

  • H. Bem
    • 1
  • M. Ostrowska
    • 1
  • E. M. Bem
    • 2
  1. 1.Institute of Applied Radiation ChemistryTechnical University of LódzLódzPoland
  2. 2.Department of Environmental EngineeringTechnical University of LódzLódzPoland

Personalised recommendations