Skip to main content
Log in

Application of pulse decay discrimination liquid scintillation counting for indoor radon measurement

  • Part 1
  • Radionuclides in the Environment, Radioecology
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The pulse decay discrimination (PDD) liquid scintillation technique has been applied to optimise radon counting by the Pico-Rad method. A dermination limit (with 10% relative error) of 4.8 Bqm−3 for indoor radon measurement has been achieved for optimal PDD setting with a radon elution cocktail containing 20% (v/v) of Ultima Gold AB in Instafluor. From a practical point of view this procedure allows a shortening of the counting time to 1 hour after 48 hours exposure to detectors. This method has been applied to indoor radon determinations in 626 places (municipal offices and private dwellings) in the Lódz region. These measureents resulted in an average concentration of 21.4 Bqm−3 and a median value of 15.1 Bqm−3. Analysis of the data indicates that most indoor radon comes from the underlying soil, which contains relatively little226Ra (10–20 Bqkg−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Lubin and J. D. Boice, J. Nat. Cancer Inst.89 (1997) 49.

    Article  Google Scholar 

  2. F. Schönhofer, K. Pock and H. Friedman: J. Radioanal. Nucl. Chem., Art.193 (1995) 337.

    Article  Google Scholar 

  3. H. Bem, T. Domanski, Y. Y. Bakir and S. Al Zenki:in Proc. Int. Conf. IRPA 9 Vienna, 1996, Vol. 2 (1996), p. 101.

  4. J. Maringer et al.:in Proc. IRPA Symp. Prague, 1997, (Ed. J. Sabol) Prague, 1998, p. 150.

  5. L. A. Currie: Anal. Chem.40 (1968) 586

    Article  Google Scholar 

  6. L. Salonen: Sci. Total Environ.130/131, (1993) 23.

    Article  Google Scholar 

  7. J. D. Spalding and J. E. Noakes:in Liquid Scintillation Spectrometry, Tucson, 1992, (Eds. J. E. Noakes, F. Schönhofer and M. A. Polach), Radiocarbon, 1993, p. 373.

  8. S. Möbius, P. Kamolchote, T. L. Ramamonjisoa and M. Yang:in Liquid Scintillation Spectrometry, Tucson, 1992 (Eds. J. E. Noakes, F. Schönhofer and M. A. Polach), Radiocarbon, 1993, p. 413.

  9. H. Bem, Y. Y. Bakir and F. Bou-Rabee: J. Radioanal. Nucl. Chem., Lett.186 (1994) 119.

    Article  Google Scholar 

  10. W. J. McDowell:in Proc.Liquid Scintillation Spectrometry, Glasgow, 1994, (Eds. G. T. Cook, D. D. Harkness, A. B. Mackenzie, B. F. Miller and E. M. Scott), Radiocarbon, 1996, p. 327.

  11. T. Oikari, H. Kojola, J. Nurmi and L. Kaihola, Appl. Radiat. Isot.38 (1987) 875.

    Article  Google Scholar 

  12. K. Mamont-Ciesla et al.:in Proc. International Conference onTechnologically Enhanced Natural Radiation, Szczyrk, Poland, 1996, p. 333.

  13. J. Vaupotic, M. Szymula, J. Solecki, S. Chibowski and I. Kobal: Health Phys.64 (1993) 422.

    Google Scholar 

  14. H. Bem and P. Wieczorkowski, unpublished results.

  15. International Atomic Energy Agency:Basic Safety Standards for Radiation Protection. Safety Series No. 115 1, Viena, 1994, p. 100.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bem, H., Ostrowska, M. & Bem, E.M. Application of pulse decay discrimination liquid scintillation counting for indoor radon measurement. Czech J Phys 49 (Suppl 1), 97–102 (1999). https://doi.org/10.1007/s10582-999-0012-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-999-0012-9

Keywords

Navigation