Czechoslovak Journal of Physics

, Volume 48, Supplement 2, pp 97–112 | Cite as

Physical mechanisms in divertors and their impact on the core

  • S. I. Krasheninnikov
Invited Papers and Discussion Summaries Basic Divertor and SOL Physics


The magnetic separatrix in a diverted tokamak determines the boundary between closed and open magnetic field lines. Even though the main influences on the physics of SOL and core regions may be different and shift from the plasma-neutral coupling and impurity radiation in the scrape-off layer (SOL) to anomalous plasma transport in the core, the influence of this boundary persists over some width, both into the core region and into the SOL. We give a short review of the progress in the divertor-SOL physics and discuss the links between edge core and SOL plasmas which are likely to have an important role in different edge-plasma phenomena.


Edge Plasma Ionization Front Neutral Ionization Impurity Radiation Cross Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S.I. Krasheninnikov et al.: Phys. Plasmas 4 (1997) 1638; S.I. Krasheninnikov: Contribution to Plasma, Physics 36 (1996) 293.CrossRefADSGoogle Scholar
  2. [2]
    K. Borrass, D. Coster, and R. Schneider: EPS-97, P4.019; K. Borrass: this conference, p. 113.Google Scholar
  3. [3]
    S.I. Krasheninnikov, M. Rensink, T.D. Rognlien, A.S. Kukushkin, et al.: PSI-98, to appear in J. Nucl. Materials.Google Scholar
  4. [4]
    K. Borras, R. Schneider, and R. Farengo: Nucl. Fusion 37 (1997) 523.CrossRefGoogle Scholar
  5. [5]
    S.I. Krasheninnikov: Phys. Plasmas 4 (1997) 3741; R. Schneider et al.: PSI-98, to appear in J. Nucl. Materials.CrossRefADSGoogle Scholar
  6. [6]
    W. Daughton et al.: Phys. Plasmas 5 (1998) 2217.CrossRefADSGoogle Scholar
  7. [7]
    A.V. Nedospasov: Sov. J. Plasma. Phys. 15 (1989) 659; H.L. Berk et al.: Phys. Fluids B 3 (1991) 1346; J.R. Myra et al.: Phys. Plasmas 4 (1997) 1330.Google Scholar
  8. [8]
    S.I. Krasheninnikov, A.Yu. Pigarov, and D.J. Sigmar: Physics Letters A 214 (1996) 285; A.Yu. Pigarov and S.I. Krasheninnikov: Physics Letters A 222 (1996) 251; D. Reiter et al.: J. Nucl. Mat. 241–243 (1997) 342.CrossRefADSGoogle Scholar
  9. [9]
    J.L. Terry et al.: Phys. Plasmas 5 (1998) 1759.CrossRefADSGoogle Scholar
  10. [10]
    N. Ohno, et al.: Phys. Rev. Lett. 81 (1998) 818.CrossRefADSGoogle Scholar
  11. [11]
    T.D. Rognlien et al.: PSI-98, to appear in J. Nucl. Materials.Google Scholar
  12. [12]
    S.I. Krasheninnikov et al.: Nucl. Fusion 27 (1987) 1805; G.M. Staebler: Nucl. Fusion 36 (1996) 1437; T.D. Rognlien et al.: Sherwood 1997.Google Scholar
  13. [13]
    T. Fulop, P.J. Catto, and P. Helander: Phys. Plasma 5 (1998) 3398.CrossRefADSGoogle Scholar
  14. [14]
    M. Umansky et al.: Phys. Plasmas 5 (1998) 3373.CrossRefADSGoogle Scholar
  15. [15]
    B. A. Carreras et al.: to appear in Phys. Plasmas.Google Scholar
  16. [16]
    D. Newman, B.A. Carreras, P.H. Diamond, and T.S. Hahm: Phys. Plasmas 3 (1996) 1858; R.O. Dandy and P. Helander: Plasma Phys. Control Fusion 39 (1997) 1947.CrossRefADSGoogle Scholar
  17. [17]
    W. Nevins: Sherwood 1998.Google Scholar
  18. [18]
    S.I. Krasheninnikov, A.N. Simakov, B.A. Carreras, P.H. Diamond: APS-98.Google Scholar

Copyright information

© Institute of Physics, Academy of Sciences of the Czech Republic 1999

Authors and Affiliations

  • S. I. Krasheninnikov
    • 1
  1. 1.MIT Plasma Science and Fusion CenterCambridgeUSA

Personalised recommendations