Skip to main content
Log in

Fast determination of uranium and radium in waters of variable composition

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The effects of uranium and its progeny radium are known to be harmful and their measurements in drinking water are necessary for careful monitoring. Fast and accurate methods for determination of uranium and radium in water samples with various salinity and activities concentrations have been developed. High Resolution Inductively Coupled Plasma Mass Spectrometry is used for direct measurement of uranium. Calibration is performed with 238U standards and 209Bi is used as internal standard to correct the matrix effects and plasma instability. The radium is determined by photon electron rejected alpha liquid spectrometry after a chemical separation procedure that includes co-precipitation of radium with barium sulphate, transformation of the sulphate to carbonate and extraction of radium in the scintillation cocktail. The minimal detectable activities of 3.5×10−8 Bq kg−1 for uranium and 2.3×10−4 Bq kg−1 for radium are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huber F. and Keim R. (Eds.): Gmelin Handbook in Inorganic Chemistry, Uranium, Supplement Volume D5, Springer Verlag, Berlin, 1995.

    Google Scholar 

  2. Lloyd R. D., Taylor G. N., Miller S. C., Bruenger F. W., and Jee W. S. S.: Health Phys. 81 (2001) 691.

    Article  Google Scholar 

  3. Guidelines for drinking-water quality, 2nd Ed., Vol.2, World Health Organization, Geneva, 1996.

  4. Guidelines for drinking-water quality, 2nd Ed., Vol.2, World Health Organization, Geneva, 1998.

  5. Aupiais J.: Anal. Chim. Acta 517 (2004) 221.

    Article  Google Scholar 

  6. Ortega X., Valles I. and Serrano I.: Environ. Intern. 22 (1996) 347.

    Article  Google Scholar 

  7. Bonatti E., Fisher D. E., Joensuu O. and Rydel H. S.: Geochim. Cosmochim. Acta 35 (1971) 180.

    Article  Google Scholar 

  8. Bosshard E., Zimmel B. and Schlatter Ch.: Chemosphere 24 (1992) 309.

    Article  Google Scholar 

  9. Czedyntsew V. V.: Uran-234, Atomizdat, Moskva, 1969.

    Google Scholar 

  10. Weaver J.: Anal. Chem. 46 (1970) 1292.

    Article  Google Scholar 

  11. Holzbecher J. and Ryan D.: Anal. Chim. Acta 119 (1980) 405.

    Article  Google Scholar 

  12. Bem H. and Ryan D.: Anal. Chim. Acta 166 (1984) 189.

    Article  Google Scholar 

  13. Zikovsky L.: J. Radioanal. Nucl. Chem. 251 (2002) 329.

    Article  Google Scholar 

  14. Blanco P., Lozano J. C. and Tomé F. V.: Appl. Radiat. Isot. 57 (2002) 785.

    Article  Google Scholar 

  15. Surbeck H.: Sci. Tot. Environ. 173/174 (1995) 91.

    Article  Google Scholar 

  16. Aupiais J., Fayolle C., Gilbert P. and Dacheux N.: Anal. Chem. 70 (1998) 2359.

    Article  Google Scholar 

  17. McDowell W. J. and McDowell B. L.: Liquid Scintillation Alpha Spectrometry, CRC Press Inc., Boca Raton, 1994.

    Google Scholar 

  18. Salonen L.: Sci. Tot. Environ. 130/131 (1993) 23.

    Article  Google Scholar 

  19. Manninen P.K.G.: J. Radioanal. Nucl. Chem. Letters 210 (1995) 71.

    Article  Google Scholar 

  20. Hodge V. F. and Laing G. A.: Radiochim. Acta 64 (1994) 211.

    Google Scholar 

  21. Unsworth E. R., Cook J. M. and Hill S. J.: Anal. Chim. Acta 442 (2001) 141.

    Article  Google Scholar 

  22. Van Britsom G., Slowikowski B. and Bickel M.: The Sci. Tot. Environ. 173/174 (1995) 83.

    Article  Google Scholar 

  23. EPA Method 6020: Inductively Coupled Plasma Mass Spectrometry, Revision 0, (1994).

  24. Montaser A. (Ed.): Inductively Coupled Plasma Mass Spectrometry, Wiley-VCH, New York, 1998.

    Google Scholar 

  25. Wiederin N. and Hamerster M.: In: Order-of-magnitude improvement in sector-field ICP-MS using a Pt guard electrode. Presented at the 1998 winter conference on plasma spectrochemistry, Scottsdale, FP 40.

  26. Ayranov M., Wacker L. and Krähenbühl U.: Radiochim. Acta 89 (2001) 823.

    Article  Google Scholar 

  27. Currie L. A.: Anal. Chem. 40 (1968) 586.

    Article  Google Scholar 

  28. Ellison S. L. R., Rosslein M. and Williams A. (Eds.): Quantifying Uncertainty in Analytical Measurement, EURACHEM / CITAC Guide CG 4, Second Edition, 2000.

  29. Aupiais J.: Radiochim. Acta 92 (2004) 125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayranov, M., Krähenbühl, U. & Schneider, U. Fast determination of uranium and radium in waters of variable composition. Czech J Phys 56 (Suppl 4), D219–D227 (2006). https://doi.org/10.1007/s10582-006-0508-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-006-0508-5

Keywords

Navigation