Czechoslovak Journal of Physics

, Volume 56, Supplement 4, pp D219–D227 | Cite as

Fast determination of uranium and radium in waters of variable composition

  • M. Ayranov
  • U. Krähenbühl
  • U. Schneider


The effects of uranium and its progeny radium are known to be harmful and their measurements in drinking water are necessary for careful monitoring. Fast and accurate methods for determination of uranium and radium in water samples with various salinity and activities concentrations have been developed. High Resolution Inductively Coupled Plasma Mass Spectrometry is used for direct measurement of uranium. Calibration is performed with 238U standards and 209Bi is used as internal standard to correct the matrix effects and plasma instability. The radium is determined by photon electron rejected alpha liquid spectrometry after a chemical separation procedure that includes co-precipitation of radium with barium sulphate, transformation of the sulphate to carbonate and extraction of radium in the scintillation cocktail. The minimal detectable activities of 3.5×10−8 Bq kg−1 for uranium and 2.3×10−4 Bq kg−1 for radium are obtained.


Uranium Radium Inductively Couple Plasma Mass Spectrometry Activity Concentration Minimal Detectable Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Huber F. and Keim R. (Eds.): Gmelin Handbook in Inorganic Chemistry, Uranium, Supplement Volume D5, Springer Verlag, Berlin, 1995.Google Scholar
  2. [2]
    Lloyd R. D., Taylor G. N., Miller S. C., Bruenger F. W., and Jee W. S. S.: Health Phys. 81 (2001) 691.CrossRefGoogle Scholar
  3. [3]
    Guidelines for drinking-water quality, 2nd Ed., Vol.2, World Health Organization, Geneva, 1996.Google Scholar
  4. [4]
    Guidelines for drinking-water quality, 2nd Ed., Vol.2, World Health Organization, Geneva, 1998.Google Scholar
  5. [5]
    Aupiais J.: Anal. Chim. Acta 517 (2004) 221.CrossRefGoogle Scholar
  6. [6]
    Ortega X., Valles I. and Serrano I.: Environ. Intern. 22 (1996) 347.CrossRefGoogle Scholar
  7. [7]
    Bonatti E., Fisher D. E., Joensuu O. and Rydel H. S.: Geochim. Cosmochim. Acta 35 (1971) 180.CrossRefGoogle Scholar
  8. [8]
    Bosshard E., Zimmel B. and Schlatter Ch.: Chemosphere 24 (1992) 309.CrossRefGoogle Scholar
  9. [9]
    Czedyntsew V. V.: Uran-234, Atomizdat, Moskva, 1969.Google Scholar
  10. [10]
    Weaver J.: Anal. Chem. 46 (1970) 1292.CrossRefGoogle Scholar
  11. [11]
    Holzbecher J. and Ryan D.: Anal. Chim. Acta 119 (1980) 405.CrossRefGoogle Scholar
  12. [12]
    Bem H. and Ryan D.: Anal. Chim. Acta 166 (1984) 189.CrossRefGoogle Scholar
  13. [13]
    Zikovsky L.: J. Radioanal. Nucl. Chem. 251 (2002) 329.CrossRefGoogle Scholar
  14. [14]
    Blanco P., Lozano J. C. and Tomé F. V.: Appl. Radiat. Isot. 57 (2002) 785.CrossRefGoogle Scholar
  15. [15]
    Surbeck H.: Sci. Tot. Environ. 173/174 (1995) 91.CrossRefGoogle Scholar
  16. [16]
    Aupiais J., Fayolle C., Gilbert P. and Dacheux N.: Anal. Chem. 70 (1998) 2359.CrossRefGoogle Scholar
  17. [17]
    McDowell W. J. and McDowell B. L.: Liquid Scintillation Alpha Spectrometry, CRC Press Inc., Boca Raton, 1994.Google Scholar
  18. [18]
    Salonen L.: Sci. Tot. Environ. 130/131 (1993) 23.CrossRefGoogle Scholar
  19. [19]
    Manninen P.K.G.: J. Radioanal. Nucl. Chem. Letters 210 (1995) 71.CrossRefGoogle Scholar
  20. [20]
    Hodge V. F. and Laing G. A.: Radiochim. Acta 64 (1994) 211.Google Scholar
  21. [21]
    Unsworth E. R., Cook J. M. and Hill S. J.: Anal. Chim. Acta 442 (2001) 141.CrossRefGoogle Scholar
  22. [22]
    Van Britsom G., Slowikowski B. and Bickel M.: The Sci. Tot. Environ. 173/174 (1995) 83.CrossRefGoogle Scholar
  23. [23]
    EPA Method 6020: Inductively Coupled Plasma Mass Spectrometry, Revision 0, (1994).Google Scholar
  24. [24]
    Montaser A. (Ed.): Inductively Coupled Plasma Mass Spectrometry, Wiley-VCH, New York, 1998.Google Scholar
  25. [25]
    Wiederin N. and Hamerster M.: In: Order-of-magnitude improvement in sector-field ICP-MS using a Pt guard electrode. Presented at the 1998 winter conference on plasma spectrochemistry, Scottsdale, FP 40.Google Scholar
  26. [26]
    Ayranov M., Wacker L. and Krähenbühl U.: Radiochim. Acta 89 (2001) 823.CrossRefGoogle Scholar
  27. [27]
    Currie L. A.: Anal. Chem. 40 (1968) 586.CrossRefGoogle Scholar
  28. [28]
    Ellison S. L. R., Rosslein M. and Williams A. (Eds.): Quantifying Uncertainty in Analytical Measurement, EURACHEM / CITAC Guide CG 4, Second Edition, 2000.Google Scholar
  29. [29]
    Aupiais J.: Radiochim. Acta 92 (2004) 125.CrossRefGoogle Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • M. Ayranov
    • 1
  • U. Krähenbühl
    • 1
  • U. Schneider
    • 1
  1. 1.Department for Chemistry and BiochemistryUniversity of BernBernSwitzerland

Personalised recommendations