Advertisement

Czechoslovak Journal of Physics

, Volume 56, Supplement 4, pp D55–D61 | Cite as

Cesium, americium and plutonium isotopes in ground level air of Vilnius

  • G. Lujaniene
  • J. Šapolaite
  • V. Remeikis
  • V. Lujanas
  • A. Jermolajev
  • V. Aninkevičius
Article

Abstract

Systematic observations of radionuclide composition and concentration in the atmosphere have been carried out at the Institute of Physics in Vilnius since 1963. Increases in activity concentration of radionuclides in the atmosphere were observed after nuclear weapon tests and the Chernobyl NPP accident. At present the radiation situation in Lithuania is determined by two main sources of radionuclides, forest fire and resuspension products transferred from highly polluted region of the Ukraine and Belarus. The activity concentrations of 137Cs were measured in two to three days samples while plutonium and americium in monthly samples. The extremely high activity concentrations of 238Pu, 239,240Pu, 241Am determined in the atmosphere during the Chernobyl accident can be explained by transport of “hot particles” of different composition. Activity concentration in 1995–2003 of 241Am and 239,240Pu isotopes ranged from 0.3 to 500 and from 1 to 500 nBq/m3, respectively. 238Pu/239,240Pu activity ratio in measured samples differs from 0.03 to 0.45. A decrease in 240Pu/239Pu atomic ratio from 0.30 to 0.19 was observed in 1995–2003.

Keywords

Radionuclide Plutonium Activity Concentration Forest Fire Americium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Lujanas V. et al.: J. Environ. Radioactivity 23 (1994) 249.CrossRefGoogle Scholar
  2. [2]
    Budyka A.K. and Ogorodnikov B.I.: Radioecology 35 (1995) 100.Google Scholar
  3. [3]
    Grebenkov A. et al.: in Proc. of Int. Conf. on Radioactivity in the Environment, Monaco, 2002, p. 493.Google Scholar
  4. [4]
    Morgenstern A. et al: Radiochim. Acta 90 (2002) 81.CrossRefGoogle Scholar
  5. [5]
    Pimpl M. and Higgy R. H.: J. Radioanal. Nucl.Chem. 248 (2001) 537.CrossRefGoogle Scholar
  6. [6]
    Tessier A., Campbell P.G. C., and Bisson M.: Anal. Chem. 51 (1979) 851.CrossRefGoogle Scholar
  7. [7]
    Agapkina G. I. et al.: J. Environ. Radioactivity 29 (1995) 257.CrossRefGoogle Scholar
  8. [8]
    Lujaniene G. et al.: J. Environ. Radioactivity 35 (1997) 71.CrossRefGoogle Scholar
  9. [9]
    Lujaniene G. et al.: Czech. J. Phys. 49 (1999) 107.Google Scholar
  10. [10]
    Ogorodnikov B.I.: in Proc. of Workshop on Radioecology of Chernobyl Zone, 2002, Slavutych, Ukraine, 2002, p. 45 (in Russian).Google Scholar
  11. [11]
    Rogge W.F. et al.: Environ. Sci. Technol. 32 (1998) 13.CrossRefGoogle Scholar
  12. [12]
    Lujaniene G., Ogorodnikov B.I. and Budyka A. K.: J.Aerosol Sci. 32 (2001) 535.Google Scholar
  13. [13]
    Boylyga S.F. et al.: Radiation Mesurements 30 (1999) 703.CrossRefGoogle Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • G. Lujaniene
    • 1
  • J. Šapolaite
    • 1
  • V. Remeikis
    • 1
  • V. Lujanas
    • 1
  • A. Jermolajev
    • 1
  • V. Aninkevičius
    • 2
  1. 1.Institute of PhysicsVilniusLithuania
  2. 2.Semiconductor Physics InstituteVilniusLithuania

Personalised recommendations