Advertisement

Czechoslovak Journal of Physics

, Volume 56, Issue 12, pp 1389–1399 | Cite as

Measurement of gas solutions in small samples of intermetallic alloys

  • Petr Řepa
  • Ladislav Peksa
  • Tomáš Gronych
  • Radek Ulman
  • Jan Wild
  • Oldřich Schneeweiss
Regular Papers

Abstract

This article describes a measuring system that was proposed so as to enable measurement of the content of dissolved gas in samples, whose shape is determined by the specific requirements of the simultaneous measurements and cannot be modified to satisfy the requirements on solubility measurements. The apparatus — a dynamic UHV vacuum system — consists of a measuring chamber fitted with a heater based on electron bombardment, which permits a change in the sample temperature according to the selected schedule. The design of the heater permits reduction of additional heating in the actual measuring chamber, so that the increase in pressure caused by the action of the heater can be neglected. The measuring part of the system permits recording of changes in the overall pressure and partial pressures of selected gases in the measuring chamber. The lowest detectable amount of dissolved gas is less than 10−5 Pa m3.

The results of measurement of the solubility of hydrogen in Ti and Fe aluminides in samples that are simultaneously used to measure the electrical conductivity are given as an example of the suitability of the apparatus for such measurements.

PACS

07.30 81.20 81.70 

Key words

measurement of the dissolved gas concentration solubility of hydrogen in intermetallics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.E. Smallman and R.J. Bishop:Modern Physical Metallurgy and Materials Engineering, 6th ed., Butterworth-Heinemann, Oxford, 1999, p. 312.Google Scholar
  2. [2]
    A. Dlouhý, K. Kuchařová, and T. Horkel: inProc. of the 1999 TMS Annual Meeting, San Diego, California, (Eds. R.S. Mishra, A.K. Mukherjee, and K. Linga Murty), TMS, Warrendale, 1999, p. 207.Google Scholar
  3. [3]
    C.T. Liu and E.P. George: Scripta Metall.24 (1990) 1285.CrossRefGoogle Scholar
  4. [4]
    E.P. George, C.T. Liu, and D.P. Pope: Scripta Metall.27 (1992) 365.CrossRefGoogle Scholar
  5. [5]
    O. Schneeweiss, I. Turek, J. Čermák, and P. Lejček:Diffusion Mechanisms in Crystalline Materials, Pittsburgh, PA, 1998, (Eds. Y. Mishin, G. Vogl, N. Cowern, R. Catlow, and D. Farkas), MRS Symp. Proc. Vol.527 (1998) 273.Google Scholar
  6. [6]
    P. Řepa, M. Rott, and D. Oralek: inProceedings of Int. Conf. on Tribology and Emission, Vienna, April 23–27, 2003 (Eds. C. Kajdas and K. Franek), Elsevier, Vienna, 2004.Google Scholar
  7. [7]
    P.A. Redhead: J. Vac. Sci. Technol. A20 (2002) 1667.CrossRefADSGoogle Scholar
  8. [8]
    F. Pauly, G. Schroeder, and J. Filho: Vakuum in Forschung und Praxis4 (1997) 269.CrossRefGoogle Scholar
  9. [9]
    P. Řepa, L. Peksa, and P. Závoda: Vacuum60 (2001) 201.CrossRefGoogle Scholar
  10. [10]
    P. Řepa, J. Tesař, T. Gronych, L. Peksa, and J. Wild: J. Mass Spectrometry37 (2002) 1287.CrossRefGoogle Scholar
  11. [11]
    M. Vondráček, O. Schneeweiss, and T. Žák: Sensors and Actuators A — Physical59 (1997) 269.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Petr Řepa
    • 1
  • Ladislav Peksa
    • 1
  • Tomáš Gronych
    • 1
  • Radek Ulman
    • 1
  • Jan Wild
    • 1
  • Oldřich Schneeweiss
    • 2
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPraha 8Czech Republic
  2. 2.Institute of Physics of MaterialsAcad. Sci. CRBrnoCzech Republic

Personalised recommendations