Advertisement

Czechoslovak Journal of Physics

, Volume 56, Issue 10–11, pp 1149–1153 | Cite as

On the logarithmic solutions of the WDVV equations

  • M. V. Feigin
Article

Abstract

We consider restrictions and subsystems in the ∨-systems corresponding to the logarithmic solutions of the WDVV equations. We present certain solutions through restrictions of the Coxeter systems.

PACS

02.03.Ik 

Key words

Witten-Dijkgraaf-Verlinde-Verlinde equations associativity equations ∨-systems Coxeter systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Dijkgraaf, E. Verlinde, and H. Verlinde: Nucl. Phys. B352 (1991) 59.CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    E. Witten: inSurveys in differential geometry, Cambridge, MA, 1990. Leight Univ., Bethlehem, PA, 1991, p. 243.Google Scholar
  3. [3]
    B. Dubrovin: inIntegrable Systems and Quantum Groups, Montecatini, Terme, 1993. (Eds. M. Francaviglia and S. Greco), Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, p. 120.Google Scholar
  4. [4]
    A. Marshakov, A. Mironov, and A. Morozov: Phys. Lett. B389 (1996) 43.CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    N. Seiberg and E. Witten: Nucl. Phys. B426 (1994) 19.MATHCrossRefADSMathSciNetGoogle Scholar
  6. [6]
    P.K.H. Gragert and R. Martini: J. Nonlin. Math. Phys.6 (1999) 1.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    A.P. Veselov: Phys. Lett. A261 (1999) 297.MATHCrossRefADSMathSciNetGoogle Scholar
  8. [8]
    O.A. Chalykh, M.V. Feigin, and A.P. Veselov: J. Math. Phys39 (1998) 695.MATHCrossRefADSMathSciNetGoogle Scholar
  9. [9]
    O.A. Chalykh, M.V. Feigin, and A.P. Veselov: Commun. Math. Phys.206 (1999) 533.MATHADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    M.V. Feigin and A.P. Veselov: math-ph/0512095.Google Scholar
  11. [11]
    O.A. Chalykh and A.P. Veselov: Phys. Lett. A285 (2001) 339.MATHCrossRefADSMathSciNetGoogle Scholar
  12. [12]
    A.N. Sergeev and A.P. Veselov: Commun. Math. Phys.245 (2004) 249.MATHCrossRefADSMathSciNetGoogle Scholar
  13. [13]
    B. Dubrovin: math.DG/0307374; inGeometry, topology, and mathematical physics, AMS Transl. Ser. 2, Vol. 212, 2004, p. 75.Google Scholar
  14. [14]
    B. Dubrovin: hep-th/9303152; Surv. Diff. Geom.IV (1999) 213.Google Scholar
  15. [15]
    K. Saito: Publ. RIMS, Kyoto Univ.29 (1993) 535.MATHGoogle Scholar
  16. [16]
    I.A.B. Strachan: Differential Geom. Appl.20 (2004) 67.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • M. V. Feigin
    • 1
  1. 1.Department of MathematicsUniversity of Glasgow University GardensGlasgowUK

Personalised recommendations