Advertisement

Czechoslovak Journal of Physics

, Volume 56, Issue 9, pp 999–1006 | Cite as

On some meaningful inner product for real Klein—Gordon fields with positive semi-definite norm

  • Frieder Kleefeld
Article

Abstract

A simple derivation of a meaningful, manifestly covariant inner product for real Klein—Gordon (KG) fields with positive semi-definite norm is provided, which turns out — assuming a symmetric bilinear form — to be the real-KG-field limit of the inner product for complex KG fields reviewed by A. Mostafazadeh and F. Zamani in December 2003, and February 2006 (quant-ph/0312078, quant-ph/0602151, quant-ph/0602161). It is explicitly shown that the positive semi-definite norm associated with the derived inner product for real KG fields measures the number of active positive and negative energy Fourier-modes of the real KG field on the relativistic mass shell. The very existence of an inner product with positive semi-definite norm for the considered real, i.e. neutral, KG fields shows that the metric operator entering the inner product does not contain the charge-conjugation operator. This observation sheds some additional light on the meaning of the C operator in the CPT inner product of PT-symmetric quantum mechanics defined by C.M. Bender, D.C. Brody and H.F. Jones.

Key words

Klein—Gordon equation inner product norm probability PT symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Pais: Max Born and the statistical interpretation of Quantum Mechanics, presented to Annual Mtg. of Optical Soc. of America, Tucson, Arizona, Oct. 21, 1982, on occasion of the centenary of Born’s birth [KEK lib. preprint 198301341].Google Scholar
  2. [2]
    E. Caliceti, S. Graffi, and M. Maioli: Commun. Math. Phys. 75 (1980) 51. V. Buslaev and V. Grecchi: J. Phys. A: Math. Gen. 26 (1993) 5541. E. Delabaere and F. Pham: Phys. Lett. A 250 (1998) 25; Phys. Lett. A 250 29.MATHMathSciNetCrossRefADSGoogle Scholar
  3. [3]
    C.M. Bender and S. Boettcher: Phys. Rev. Lett. 80 (1998) 5243.MATHMathSciNetCrossRefADSGoogle Scholar
  4. [4]
    C.M. Bender, S. Boettcher, and P. Meisinger: J. Math. Phys. 40 (1999) 2201.MATHMathSciNetCrossRefADSGoogle Scholar
  5. [5]
    F.M. Fernández, R. Guardiola, J. Ros, and M. Znojil: J. Phys. A: Math. Gen. 31 (1998) 10105; quant-ph/9812026.Google Scholar
  6. [6]
    M. Znojil: Rend. Circ. Mat. Palermo, Serie II, Suppl. 72 (2004) 211 [math-ph/0104012]. A. Mostafazadeh: J. Math. Phys. 43 (2002) 205. C.M. Bender: quant-ph/0501052. F.G. Scholtz, H.B. Geyer, and F.J.W. Hahne: Ann. Phys. 213 (1992) 74.MATHMathSciNetGoogle Scholar
  7. [7]
    M. Znojil: Czech. J. Phys. 54 (2004) 151 [quant-ph/0309100].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    M. Znojil, Ed.: Proc. 1st Int. Workshop on “Pseudo-Hermitian Hamiltonians in Quantum Physics”, 16–17 June, 2003, Villa Lanna, Prague, Czech Republic, Czech. J. Phys. 54 (2004), pp. 1–156; Proc. 2nd Int. Workshop on “Pseudo-Hermitian Hamiltonians in Quantum Physics”, 14–16 June, 2004, Villa Lanna, Prague, Czech Republic, Czech. J. Phys. 54 (2004), pp. 1005–1148; Proc. 3rd Int. Workshop on “Pseudo-Hermitian Hamiltonians in Quantum Physics”, 20–22 June, 2005, Koç University, Istanbul, Turkey, Czech. J. Phys. 55 (2005), pp. 1049–1192.Google Scholar
  9. [9]
    A. Mostafazadeh and A. Batal: J. Phys. A: Math. Gen. 37 (2004) 11645; 38 (2005) 3213.Google Scholar
  10. [10]
    F. Kleefeld: AIP Conf. Proc. 660 (2003) 325 [hep-ph/0211460].ADSGoogle Scholar
  11. [11]
    F. Kleefeld: hep-th/0408028; hep-th/0408097.Google Scholar
  12. [12]
    F. Kleefeld: J. Phys. A 39 (2006) L9; Czech. J. Phys. 55 (2005) 1123.MATHMathSciNetCrossRefADSGoogle Scholar
  13. [13]
    C.M. Bender, S.F. Brandt, J.-H. Chen, and Q.-H. Wang: Phys. Rev. D 71 (2005) 025014. H.F. Jones and J. Mateo: Phys. Rev. D 73 (2006) 085002.Google Scholar
  14. [14]
    C.M. Bender, D.C. Brody, and H.F. Jones: Phys. Rev. Lett. 89 (2002) 270401 [Erratum: 92 (2004) 119902].Google Scholar
  15. [15]
    C.M. Bender, D.C. Brody, and H.F. Jones: Phys. Rev. D 73 (2006) 025002.Google Scholar
  16. [16]
    M. Robnik and M.V. Berry: J. Phys. A: Math. Gen. 19 (1986) 669.MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    P Dorey, C. Dunning, and R. Tateo: J. Phys. A: Math. Gen. 34 (2001) 5679. K.C. Shin: Commun. Math. Phys. 229 (2002) 543 [math-ph/0201013]. E. Caliceti, S. Gra., and S. Sjostrand: J. Phys. A: Math. Gen. 38 (2005) 185. P. Dorey, A. Millican-Slater, and R. Tateo: J. Phys. A: Math. Gen. 38 (2005) 1305.MATHMathSciNetCrossRefADSGoogle Scholar
  18. [18]
    G.S. Japaridze: J. Phys. A: Math. Gen. 35 (2002) 1709. B. Bagchi, C. Quesne, and M. Znojil: Mod. Phys. Lett. A 16 (2001) 2047. S. Weigert: Phys. Rev. A 68 (2003) 062111. Duc Tai Trinh: J. Phys. A: Math. Gen. 38 (2005) 3665.MATHMathSciNetCrossRefADSGoogle Scholar
  19. [19]
    C.M. Bender, D.C. Brody, and H.F. Jones: Phys. Rev. D 70 (2004) 025001 [Erratum: D 71 (2005) 049901].Google Scholar
  20. [20]
    C.M. Bender, S.F. Brandt, J.-H. Chen, and Q.-H. Wang: Phys. Rev. D 71 (2005) 065010.Google Scholar
  21. [21]
    A. Mostafazadeh: quant-ph/0307059v2; Int. J. Mod. Phys. A 21 (2006) 2553.MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    A. Mostafazadeh: J. Math. Phys. 44 (2003) 974. B.F. Samsonov and P. Roy: J. Phys. A: Math. Gen. 38 (2005) L249. T. Tanaka: hep-th/0603096.MATHMathSciNetCrossRefADSGoogle Scholar
  23. [23]
    F. Kleefeld: Proc. of Inst. of Mathematics of NAS of Ukraine 50 (Part 3) (2004) 1367 [hep-th/0310204].MATHGoogle Scholar
  24. [24]
    F. Kleefeld: hep-th/0312027; Few-Body Systems Suppl. 15 (2003) 201. F. Kleefeld et al.: Nucl. Phys. A 694 (2001) 470. F. Kleefeld: Acta Phys. Polon. B 30 (1999) 981; in Proc. XIV ISHEPP 98, 17–22 August, 1998, Dubna, (Eds. A.M. Baldin, V.V. Burov), JINR, Dubna, 2000, Part 1, p. 69 [nucl-th/9811032]; PhD Thesis (University of Erlangen-Nürnberg, Germany, 1999).Google Scholar
  25. [25]
    A. Mostafazadeh and F. Zamani: quant-ph/0312078; quant-ph/0602151; quant-ph/0602161.Google Scholar
  26. [26]
    A. Mostafazadeh: Class. Quant. Grav. 20 (2003) 155; Annals Phys. 309 (2004) 1.MATHMathSciNetCrossRefADSGoogle Scholar
  27. [27]
    R.M. Wald: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, Chicago University Press, Chicago, 1994. J.J. Halliwell and M.E. Ortiz: Phys. Rev. D 48 (1993) 748. R.P. Woodard: Class. Quant. Grav. 10 (1993) 483.MATHGoogle Scholar
  28. [28]
    H. Sazdjian: J. Math. Phys. 29 (1988) 1620; Phys. Lett. B 180 (1986) 146.MATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • Frieder Kleefeld
    • 1
  1. 1.Centro de Física das Interacções Fundamentais (CFIF)Instituto Superior TécnicoLisboaPortugal

Personalised recommendations