Advertisement

Czechoslovak Journal of Physics

, Volume 56, Issue 9, pp 893–898 | Cite as

\(\mathcal{P}\mathcal{T}\)-symmetric quartic anharmonic oscillator and position-dependent mass in a perturbative approach

  • B. Bagchi
  • A. Banerjee
  • C. Quesne
Article

Abstract

To lowest order of perturbation theory we show that an equivalence can be established between a \(\mathcal{P}\mathcal{T}\)-symmetric generalized quartic anharmonic oscillator model and a Hermitian position-dependent mass Hamiltonian h. An important feature of h is that it reveals a domain of couplings where the quartic potential could be attractive, vanishing or repulsive. We also determine the associated physical quantities.

Key words

PT symmetry position-dependent mass perturbation theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Mostafazadeh: J. Phys. A 38 (2005) 6557; quant-ph/0411137.MATHMathSciNetCrossRefADSGoogle Scholar
  2. [2]
    A. Mostafazadeh and A. Batal: J. Phys. A 37 (2004) 11645; quant-ph/0408132.Google Scholar
  3. [3]
    H.F. Jones: J. Phys. A 38 (2005) 1741; quant-ph/0411171.MATHMathSciNetCrossRefADSGoogle Scholar
  4. [4]
    P.K. Ghosh: J. Phys. A 38 (2005) 7313; quant-ph/0501087.MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    B. Bagchi, C. Quesne, and R. Roychoudhury: J. Phys. A 38 (2005) L647; quant-ph/0508073.MATHMathSciNetCrossRefADSGoogle Scholar
  6. [6]
    B. Bagchi, C. Quesne, and R. Roychoudhury: J. Phys. A 39 (2006) L127; quant-ph/0511182.MATHMathSciNetCrossRefADSGoogle Scholar
  7. [7]
    C.M. Bender: Contemp. Phys. 46 (2005) 277; quant-ph/0501052.MathSciNetADSGoogle Scholar
  8. [8]
    C.M. Bender and S. Boettcher: J. Phys. A 31 (1998) L273; physics/9801007.MATHMathSciNetCrossRefADSGoogle Scholar
  9. [9]
    M. Znojil: Quasi-exact minus-quartic oscillators in strong-core regime; quant-ph/0602231.Google Scholar
  10. [10]
    A. Banerjee: Mod. Phys. Lett. A 20 (2005) 3013; quant-ph/0502163.MATHCrossRefADSGoogle Scholar
  11. [11]
    C.M. Bender, D.C. Brody, and H.F. Jones: Phys. Rev. D 73 (2006) 025002; quant-ph/0509034.Google Scholar
  12. [12]
    R.S. Kaushal and S. Singh: Ann. Phys. (NY) 288 (2001) 253.MATHMathSciNetCrossRefADSGoogle Scholar
  13. [13]
    A. Mostafazadeh: Phys. Lett. A 357 (2006) 177; quant-ph/0603091.MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • B. Bagchi
    • 1
  • A. Banerjee
    • 1
  • C. Quesne
    • 2
  1. 1.Department of Applied MathematicsUniversity of CalcuttaKolkataIndia
  2. 2.Physique Nucléaire Théorique et Physique MathématiqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations