Czechoslovak Journal of Physics

, Volume 56, Supplement 2, pp B557–B563 | Cite as

Kinetic processes in the laser corona heated by a nanosecond iodine laser

  • M. Mašek
  • K. Rohlena


The behaviour of plasma electrons in a laser corona generated by focusing the first harmonic (λ = 1.315 µm) beam of the nanosecond iodine laser Asterix for a power density in the focal spot of 1016 Wcm−2 is studied by solving a 1D Vlasov equation with a small collision term coupled to the Maxwell equations to describe the wave propagation and transformation in a long plasma corona. The temporal evolution of electron phase space is studied in detail with the aim to identify the mechanisms relevant for the wave properties. The dominant wave modes occurring in our model are both the backward and forward propagating Raman waves, each accompanied by a daughter electrostatic wave, which may strongly interact with the plasma electrons. Within the frame of our model we identify several mechanisms of wave transformation accompanying the propagation and the corresponding kinetic phenomena in the phase space. These are visualized by the behaviour of electron distribution function, evolution of electrostatic spectrum and of Raman reflection coefficient.

Key words

laser plasma Vlasov simulation Raman scattering 


  1. [1]
    J. Lindel: Phys. Plasma 2 (1995) 3933.CrossRefADSGoogle Scholar
  2. [2]
    K. Rohlena, B. Králiková, J. Krása, L. Láska: Laser Part. Beams 14 (1996) 335.CrossRefADSGoogle Scholar
  3. [3]
    W. L. Kruer: The Physics of Laser Plasma Interactions. Addison-Wesley Publishing Company, 1988.Google Scholar
  4. [4]
    P. Bertrand, A. Ghizzo, S. J. Kartunen, T. J. H. Pattikangas, R. R. E. Salomaa, M. Shoucri: Phys. Plasmas 2 (1995) 3115.CrossRefADSGoogle Scholar
  5. [5]
    A. Salcedo, R. J. Focia, A. K. Ram, and A. Bers: Nucl. Fusion 43 (2003) 1759.CrossRefADSGoogle Scholar
  6. [6]
    W. L. Kruer, J. M. Dawson, R. N. Sudan: Phys. Rev. Lett. 23 (1969) 838.CrossRefADSGoogle Scholar
  7. [7]
    S. Brunner, E. J. Valeo: Phys. Rev. Lett. 93 (2004) 145003.Google Scholar
  8. [8]
    T. P. Armstrong, R. C. Harding, G. Knorr, D. Montgomery: Methods in Computational Physics. Volume 9 Academic Press 1970.Google Scholar
  9. [9]
    F. Filbet, E. Sonnendruecker: Comput. Phys. Commun. 150 (2003) 247.CrossRefADSGoogle Scholar
  10. [10]
    J. Horák, L. Krlín: Deterministický chaos a matematické modely turbulence AKADEMIA 1996 64-97.Google Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • M. Mašek
    • 1
  • K. Rohlena
    • 1
  1. 1.Institute of PhysicsASCRPrague 8Czech Republic

Personalised recommendations