Advertisement

Czechoslovak Journal of Physics

, Volume 56, Supplement 2, pp B485–B492 | Cite as

2D hydrodynamic simulations of generation of high-current proton beams by relativistic skin-layer laser-plasma interaction

  • S. Jablonski
  • J. Badziak
  • S. Glowacz
Article

Abstract

The properties of fast proton beam generation by skin-layer ponderomotive acceleration (SLPA) induced by a short (< 1 ps) laser pulse are studied using 2D two-fluid relativistic code. It is found that both for subrelativistic and relativistic laser intensities, the crucial parameter determining the spatial structure and angular divergence (Θ b) of the proton beam is the ratio d L/L n, where d L is the laser beam diameter and L n is the density gradient scale length of preplasma in front of the target. When this ratio is relatively small (< 10), the proton beam generated at relativistic laser intensities has a bubble-like structure and Θ is large. When d L is at least tens times greater than L n, the transverse distribution of the proton density and the proton current density in the beam follow the spatial shape of the laser beam and Θ b is small. In the last case, highly collimated high-current (MA) proton beams can be produced by SLPA at relativistic laser intensities.

Key words

plasma laser protons simulations 

References

  1. [1]
    J. Badziak, et al.: Appl. Phys. Lett. 85 (2004) 3041.CrossRefADSGoogle Scholar
  2. [2]
    J. Badziak, et al.: Plasma Phys. Control. Fusion 46 (2004) B541.CrossRefGoogle Scholar
  3. [3]
    J. Badziak, et al.: Laser Part. Beams 23 (2005) 401.CrossRefADSGoogle Scholar
  4. [4]
    S. C. Wilks, et al.: Phys. Plasmas 8 (2001) 542.CrossRefADSGoogle Scholar
  5. [5]
    R. A. Snavely, et al.: Phys. Rev. Lett. 85 (2000) 2945.CrossRefADSGoogle Scholar
  6. [6]
    M. Zepf, et al.: Phys. Rev. Lett. 90 (2003) 064801.Google Scholar
  7. [7]
    T. E. Cowan, et al.: Phys. Rev. Lett. 92 (2004) 204801.Google Scholar
  8. [8]
    S. Hain, et al.: Laser Part. Beams 17 (1999) 245.CrossRefADSGoogle Scholar
  9. [9]
    S. C. Wilks, et al.: Phys. Rev. Lett. 69 (1992) 1383.CrossRefADSGoogle Scholar
  10. [10]
    C. Toupin, et al.: Phys. Plasmas 8 (2001) 1011.CrossRefADSGoogle Scholar
  11. [11]
    Y. Sentoku, et al.: Appl. Phys. B 74 (2002) 2007.CrossRefGoogle Scholar
  12. [12]
    www.Coherent.com; www.amplitude-technologie.com.Google Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • S. Jablonski
    • 1
  • J. Badziak
    • 1
  • S. Glowacz
    • 1
  1. 1.Institute of Plasma Physics and Laser Microfusion, EURATOM AssociationWarsawPoland

Personalised recommendations