Czechoslovak Journal of Physics

, Volume 56, Issue 7, pp 665–764 | Cite as

Optics of anisotropic nanostructures

  • Katsu Rokushima
  • Roman Antoš
  • Jan Mistrík
  • Štefan Višňovský
  • Tomuo Yamaguchi


The analytical formalism of Rokushima and Yamakita [J. Opt. Soc. Am. 73, 901–908 (1983)] treating the Fraunhofer diffraction in planar multilayered anisotropic gratings proved to be a useful introduction to new fundamental and practical situations encountered in laterally structured periodic (both isotropic and anisotropic) multilayer media. These are employed in the spectroscopic ellipsometry for modeling surface roughness and in-depth profiles, as well as in the design of various frequency-selective elements including photonic crystals. The subject forms the basis for the solution of inverse problems in scatterometry of periodic nanostructures including magnetic and magneto-optic recording media. It has no principal limitations as for the frequencies and period to radiation wavelength ratios and may include matter wave diffraction. The aim of the paper is to make this formalism easily accessible to a broader community of students and non-specialists. Many aspects of traditional electromagnetic optics are covered as special cases from a modern and more general point of view, e.g., plane wave propagation in isotropic media, reflection and refraction at interfaces, Fabry-Perot resonator, optics of thin films and multilayers, slab dielectric waveguides, crystal optics, acousto-, electro-, and magneto-optics, diffraction gratings, etc. The formalism is illustrated on a model simulating the diffraction on a ferromagnetic wire grating.

Key words

periodic structures anisotropic multilayers magnetooptic nanostructures photonic crystals scatterometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Rokushima and J. Yamakita: Analysis of anisotropic dielectric gratings, J. Opt. Soc. Am. 73 (1983) 901–908. Reprinted in Selected papers on Diffraction Gratings, (Ed. D. Maystre, Gen. Ed. B.J. Thompson), SPIE Milestone Series, Vol. MS 83, SPIE Optical Engineering Press, 1993, pp. 519–526.ADSGoogle Scholar
  2. [2]
    O. Francescangeli, S. Melone, and R. Deleo: Dynamic Diffraction of Guided Electromagnetic Waves by 2-Dimensional Periodic Dielectric Gratings, Phys. Rev. A 43 (1991) 6975–6989.CrossRefADSGoogle Scholar
  3. [3]
    D. W. Berreman and A. T. Macrander: Asymmetric X-Ray-Diffraction by Strained Crystal Wafers-8 × 8-Matrix Dynamical Theory, Phys. Rev. B 37 (1988) 6030–6040.CrossRefADSGoogle Scholar
  4. [4]
    E. N. Glytsis and T. K. Gaylord: 3-Dimensional (Vector) Rigorous Coupled-Wave Analysis of Anisotropic Grating Diffraction, J. Opt. Soc. Am. A 7 (1990) 1399–1420.ADSGoogle Scholar
  5. [5]
    Š. Višňovský and K. Yasumoto: Multilayer anisotropic bi-periodic diffraction gratings, Czech. J. Phys. B 51 (2001) 229–247.CrossRefADSGoogle Scholar
  6. [6]
    Lifeng Li: Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors, J. Optics A: Pure Appl. Opt. 5 (2003) 345–355.CrossRefADSGoogle Scholar
  7. [7]
    S. P. Liu: Exact Theories For Light, X-Ray, Electron, and Neutron Diffractions from Planar Media with Periodic Structures, Phys. Rev. B 39 (1989) 10640–10650.Google Scholar
  8. [8]
    S. Ponti, C. Oldano, and M. Becchi: Bloch wave approach to the optics of crystals, Phys. Rev. E 64 (2001) Art. No. 021704.Google Scholar
  9. [9]
    M. Becchi, C. Oldano, S. Ponti: Spatial dispersion and optics of crystals, J. Optics A: Pure Appl. Opt. 1 (1999) 713–718.CrossRefADSGoogle Scholar
  10. [10]
    D. Ciprian and J. Pištora: Magneto-optic periodic strip structures, Acta Phys. Pol. A 99 (2001) 33–46.Google Scholar
  11. [11]
    J. M. Jarem, and P. P. Banerjee: Application of the complex Poynting theorem to diffraction gratings, J. Opt. Soc. Am. A 16 (1999) 1097–1107.ADSGoogle Scholar
  12. [12]
    G. Montemezzani and M. Zgonik: Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries, Phys. Rev. E 55 (1997) 1035–1047.CrossRefADSGoogle Scholar
  13. [13]
    Y. Ohkawa, Y. Tsuji, and M. Koshiba: Analysis of anisotropic dielectric grating diffraction using the finite-element method, J. Opt. Soc. Am. A 13 (1996) 1006–1012.ADSGoogle Scholar
  14. [14]
    P. Galatola, C. Oldano, and P. B. S. Kumar: Symmetry Properties of Anisotropic Dielectric Gratings, J. Opt. Soc. Am. A 11 (1994) 1332–1341.ADSGoogle Scholar
  15. [15]
    R. A. Depine, V. L. Brudny, and A. Lakhtakia: T-Matrix Approach for Calculating the Electromagnetic-Fields Diffracted by a Corrugated, Anisotropic Grating, J. Mod. Optics 39 (1992) 589–601.ADSGoogle Scholar
  16. [16]
    A. Vial and D. Van Labeke: Diffraction hysteresis loop modelisation in transverse magneto-optical Kerr effect, Opt. Commun. 153 (1998) 125–133.CrossRefADSGoogle Scholar
  17. [17]
    Y. Pagani, D. Van Labeke, B. Guizal, A. Vial, and F. Baida: Diffraction hysteresis loop modeling in magneto-optical gratings, Opt. Commun. 209 (2002) 237–244.CrossRefADSGoogle Scholar
  18. [18]
    N. Bardou, B. Bartenlian, F. Rousseaux, D. Decanini, F. Carsenac, C. Chappert, P. Veillet, P. Beauvillain, R. Mégy, Y. Suzuki, and J. Ferré: Light diffraction effects in the magneto-optical properties of 2D arrays of magnetic dots of Au/Co/Au(111) films with perpendicular magnetic anisotropy, J. Magn. Magn. Mat. 156 (1995) 293–294.CrossRefGoogle Scholar
  19. [19]
    Y. Suzuki, C. Chapert, P. Bruno, and P. Veillet: Simple model for the magneto-optical Kerr diffraction of a regular array of magnetic dots, J. Magn. Magn. Mat. 165 (1997) 516–519.CrossRefADSGoogle Scholar
  20. [20]
    S. Mori, K. Mukai, J. Yamakita, and K. Rokushima: Analysis of Dielectric Lamellar Gratings Coated With Anisotropic Layers, J. Opt. Soc. Am. A 7 (1990) 1661–1665.ADSCrossRefGoogle Scholar
  21. [21]
    M. Nevière and E. Popov: Light Propagation in Periodic Media, Marcel Dekker, Inc., New York-Basel, 2003.Google Scholar
  22. [22]
    S. Mitani, K. Takanashi, H. Nakajima, K. Sato, R. Schreiber, P. Grunberg, and H. Fujimori: Structural and magnetic properties of Fe/noble metal monoatomic multilayers equivalent to L1 0 ordered alloys, J. Magn. Magn. Mat. 156 (1996) 7–10.CrossRefADSGoogle Scholar
  23. [23]
    K. Machida, T. Tezuka, T. Yamamoto, T. Ishibashi, Y. Morishita, A. Koukitu, and K. Sato: Magnetic structure of cross-shaped permalloy arrays embedded in silicon wafers, J. Magn. Magn. Mat. 290/291 (2005) 779–782.CrossRefADSGoogle Scholar
  24. [24]
    K. Yasumoto, H. Toyama, and T. Kushta: Accurate Analysis of Two-Dimensional Electromagnetic Scattering from Multilayered Periodic Arrays of Circular Cylinders using Lattice Sums Technique, IEEE Trans. Antenna Propag. 52 (2004) 2603–2611.MathSciNetCrossRefADSGoogle Scholar
  25. [25]
    Kiyotoshi Yasumoto, Editor: Electromagnetic Theory and Applications for Photonic Crystals, Taylor & Francis, Boca Raton-London-New York, 2006.Google Scholar
  26. [26]
    J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gérard, D. Maystre, and A. Tchelnokov: Les cristaux photoniques ou la lumière en cage, Collection Téchnique et Scientifique des Té lécommunications, GET et Lavoisier, Paris, 2003; Photonic crystals: towards nanoscale photonic devices, Springer-Verlag, Berlin-Heidelberg-New York, 2005.Google Scholar
  27. [27]
    D. E. Aspnes: Expanding horizons: new developments in ellipsometry and polarimetry, Thin Solid Films 455/456 (2004) 3–13.CrossRefADSGoogle Scholar
  28. [28]
    F. Abelès: Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés. Application aux couches minces, Ann. Phys. Paris 5 (1950) 596–640.Google Scholar
  29. [29]
    J. Lafait, T. Yamaguchi, J. M. Frigerio, A. Bichri, and K. Driss-Khodja: Effective medium equivalent to a symmetric multilayer at oblique incidence, Appl. Opt. 29 (1990) 2460–2465.ADSCrossRefGoogle Scholar
  30. [30]
    D. Marcuse: Light Transmission Optics, Bell Laboratories Series, Van Nostrand and Rienhold Company, New York, 1972, Chapter 1.Google Scholar
  31. [31]
    D. Marcuse: Theory of Dielectric Optical Waveguides, Academic Press, New York-London, 1974, Chapter 2.Google Scholar
  32. [32]
    P. K. Tien: Integrated optics and new wave phenomena in optical waveguides, Rev. Mod. Phys. 49 (1977) 361–420.CrossRefADSGoogle Scholar
  33. [33]
    Max Born and Emil Wolf with contributions by A.B. Bhatia, P.C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P.A. Wayman, and W. L. Wilcock: Principles of Optics, Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, Sixth (Corrected) Edition, Cambridge University Press, Cambridge-New York-Melbourne, 1997.Google Scholar
  34. [34]
    R. M. A. Azzam and N. M. Bashara: Ellipsometry and Polarized Light, North Holland, Elsevier, Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo, 1987.Google Scholar
  35. [35]
    A. K. Zvezdin and V.A. Kotov: Modern Magnetooptics and Magnetooptical Materials Institute of Physics Publishing, Bristol-Philadelphia, 1997.CrossRefGoogle Scholar
  36. [36]
    Š. Višňovský: Magneto-optical permittivity tensor in crystals, Czech. J. Phys. B 36 (1986) 1424–1433.CrossRefADSGoogle Scholar
  37. [37]
    D. W. Berreman: Optics in Stratified and Anisotropic Media: 4 × 4-Matrix Formulation, J. Opt. Soc. Am. 62 (1972) 502–510.ADSGoogle Scholar
  38. [38]
    D. W. Berreman: Optics in Smoothly Varying Anisotropic Planar Structures: Application to Liquid-Crystal Twist Cells, J. Opt. Soc. Am. 63 (1973) 1374–1380.ADSGoogle Scholar
  39. [39]
    P. Yeh: Electromagnetic Propagation in Birefringent Layered Media, J. Opt. Soc. Am. 69 (1979) 742–756; Optics of anisotropic layered media: a new 4 × 4 matrix algebra, Surf. Sci. 96 (1980) 41–53.ADSGoogle Scholar
  40. [40]
    Š. Višňovský: Magneto-optical ellipsometry, Czech. J. Phys. B 36 (1986) 625–650.CrossRefADSGoogle Scholar
  41. [41]
    M. Mansuripur: The Physical Principles of Magneto-optical Recording, Cambridge University Press, London, 1996.Google Scholar
  42. [42]
    M. Schubert: Polarization-dependent optical parameters of arbitrarily anisotropic homogenous layered systems, Phys. Rev. B 53 (1996) 4265–4274.CrossRefADSGoogle Scholar
  43. [43]
    H. Benisty: Photonic crystals — New designs to confine light, Nat. Phys. 1 (2005) 9–10.CrossRefGoogle Scholar
  44. [44]
    C. Jamois, R. B. Wehrspohn, L.C. Andreani, C. Hermann, O. Hess, and U. Gosele: Silicon-based two-dimensional photonic crystal waveguides, Photonics and Nanostructures-Fundamentals and Applications 1 (2003) 1–13.CrossRefADSGoogle Scholar
  45. [45]
    Lijun Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss: Square lattice photonic-crystal collimator, Photonics and Nanostructures-Fundamentals and Applications 1 (2003) 31–36.CrossRefADSGoogle Scholar
  46. [46]
    R.-C. Tyan, P.-C. Sun, A. Scherer, and Y. Fainman: Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings, Opt. Lett. 21 (1996) 761–763.ADSGoogle Scholar
  47. [47]
    N. Kono and M. Koshiba: Three-dimensional finite element analysis of nonreciprocal phase shifts in magneto-photonic crystal waveguides, Opt. Express 13 (2005) 9155–9166.CrossRefADSGoogle Scholar
  48. [48]
    A. Figotin and I. Vitebskiy: Electromagnetic unidirectionality in magnetic photonic crystals, Phys. Rev. B 67 (2003) 165210.Google Scholar
  49. [49]
    N. Kono and Y. Tsuji: A novel finite-element method for nonreciprocal magnetophotonic crystal waveguides, J. Lightwave Technol. 22 (2004) 1741–1747.CrossRefADSGoogle Scholar
  50. [50]
    A. Figotin and I. Vitebskiy: Nonreciprocal magnetic photonic crystals, Phys. Rev. E 63 (2001) 066609.Google Scholar
  51. [51]
    T.V. Murzina, R.V. Kapra, T.V. Dolgova, A.A. Fedyanin, O.A. Aktsipetrov, K. Nishimura, H. Uchida, and M. Inoue: Magnetization-induced second-harmonic generation in magnetophotonic crystals, Phys. Rev. B 70 (2004) 012407.Google Scholar
  52. [52]
    O. A. Aktsipetrov, T.V. Dolgova, A.A. Fedyanin, T.V. Murzina, M. Inoue, K. Nishimura, and H. Uchida: Magnetization-induced second-and third-harmonic generation in magnetophotonic crystals, J. Opt. Soc. Am. B 22 (2005) 176–186.CrossRefADSGoogle Scholar
  53. [53]
    K. Yee: Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE T. Antenn. Propag. AP-14 (1966) 302–307.ADSGoogle Scholar
  54. [54]
    H. Kogelnik: Coupled wave theory for thick hologram gratings, Bell. Syst. Tech. J. 48 (1969) 2909–2947; Integrated Optics, Topics in Applied Physics, Vol. 9, (Ed. T. Tamir), Springer-Verlag, Berlin, 1975.Google Scholar
  55. [55]
    L. Li and W. Haggans: Convergence of the coupled-wave method for metallic lamellar diffraction gratings, J. Opt. Soc. Am. A 10 (1993) 1184–1189.ADSGoogle Scholar
  56. [56]
    P. Lalanne and G.M. Morris: Highly improved convergence of the coupled-wave method for TM polarization, J. Opt. Soc. Am. A 13 (1996) 779–784.ADSGoogle Scholar
  57. [57]
    G. Granet and B. Guizal: E.cient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization, J. Opt. Soc. Am. A 13 (1996) 1019–1023.ADSCrossRefGoogle Scholar
  58. [58]
    L. Li: Use of Fourier series in the analysis of discontinuous periodic structures, J. Opt. Soc. Am. A 13 (1996) 1870–1876.ADSGoogle Scholar
  59. [59]
    L. Li: New formulation of the Fourier modal method for crossed surface-relief gratings, J. Opt. Soc. Am. 14 (1997) 2758–2767.ADSGoogle Scholar
  60. [60]
    L. Li: Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials, J. Mod. Opt. 45 (1998) 1313–1334.CrossRefADSGoogle Scholar
  61. [61]
    B. Chernov, M. Nevière, and E. Popov: Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings, Opt. Commun. 194 (2001) 289–297.CrossRefADSGoogle Scholar
  62. [62]
    E. Popov and M. Nevière: Grating theory: new equations in Fourier space leading to fast converging results for TM polarization, J. Opt. Soc. Am. A 17 (2000) 1773–1784.ADSGoogle Scholar
  63. [63]
    K. Watanabe, R. Petit, and M. Nevière: Differential theory of gratings made of anisotropic materials, J. Opt. Soc. Am. A 19 (2002) 325–334.ADSGoogle Scholar
  64. [64]
    L. Li: Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors, J. Opt. A: Pure Appl. Opt. 5 (2003) 345–355.CrossRefADSGoogle Scholar
  65. [65]
    N. Bonod, E. Popov, and M. Nevière: Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect, Opt. Commun. 244 (2005) 389–398.CrossRefADSGoogle Scholar
  66. [66]
    P. Boyer, E. Popov, M. Nevière, and G. Tayeb: Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section, J. Opt. Soc. Am. A 21 (2004) 2146–2153.CrossRefADSGoogle Scholar
  67. [67]
    K. Rokushima and J. Yamakita: Analysis of Diffraction in Periodic Liquid-Crystals — The Optics of the Chiral Smectic-C Phase, J. Opt. Soc. Am. A 4 (1987) 27–33.ADSGoogle Scholar
  68. [68]
    R. Antos, J. Mistrik, T. Yamaguchi, S. Visnovsky, S. O. Demokritov, and B. Hillebrands: Evidence of native oxides on the capping and substrate of Permalloy gratings by magneto-optical spectroscopy in the zeroth-and first-diffraction orders, Appl. Phys. Lett. 86 (2005) 231101.Google Scholar
  69. [69]
    J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller: Ordered magnetic nanostructures: fabrication and properties, J. Magn. Magn. Mater. 256 (2003) 449–501.CrossRefADSGoogle Scholar
  70. [70]
    M. Grimsditch and P. Vavassori: The diffracted magneto-optic Kerr effect: what does it tell you?, J. Phys.: Condens. Matter. 16 (2004) R275–R294.CrossRefADSGoogle Scholar
  71. [71]
    M. R. Freeman: Picosecond pulsed-field probes of magnetic systems (invited), J. Appl. Phys. 75 (1994) 6194–6198.CrossRefADSGoogle Scholar
  72. [72]
    R. Antos, J. Mistrik, T. Yamaguchi, S. Visnovsky, S. O. Demokritov, and B. Hillebrands: Evaluation of the quality of Permalloy gratings by diffracted magneto-optical spectroscopy, Opt. Express 13 (2005) 4651–4656.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Katsu Rokushima
    • 1
    • 3
  • Roman Antoš
    • 1
  • Jan Mistrík
    • 1
  • Štefan Višňovský
    • 2
  • Tomuo Yamaguchi
    • 1
  1. 1.Research Institute of ElectronicsShizuoka UniversityHamamatsuJapan
  2. 2.Institute of PhysicsFaculty of Mathematics and Physics, Charles UniversityPrague 2Czech Republic
  3. 3.University of Osaka PrefectureOsaka

Personalised recommendations