Czechoslovak Journal of Physics

, Volume 56, Issue 3, pp 267–276 | Cite as

Structure analysis of thin iron-silicide film from φ-scan RHEED Patterson function

  • Oleksandr Romanyuk
  • Keita Kataoka
  • Fumihiko Matsui
  • Ken Hattori
  • Hiroshi Daimon


The atomic structure of thin iron silicide film, grown epitaxially on the Si(111) surface, has been analyzed by means of the three-dimensional RHEED Patterson function analysis. The iron-silicide-terminated surface with (2 × 2) periodicity has been prepared by a solid-phase epitaxy method. 2 ML of Fe were deposited on the Si(111)-(7 × 7) surface and annealed at 500°C. Three-dimensional Patterson function was calculated from series of φ-scanned RHEED intensity distributions converted to the k-space. The resulting model of γ-FeSi2 structure consists of two silicide layers faulted to each other with three relaxed Si adatoms above the H3 site.


61.14.Hg 68.55.—a 

Key words

Patterson function RHEED iron silicide structure analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Sirringhaus, N. Onda, E. Müller-Gubler, P. Muller, R. Stalder, and H. von Känel: Phys. Rev. B 47 (1993) 10567.Google Scholar
  2. [2]
    N. Motta, A. Sgarlata, G. Gaggiotti, F. Patella, A. Balzarotti, and M. de Crescenzi: Surf. Sci. 284 (1993) 257.CrossRefGoogle Scholar
  3. [3]
    H. von Känel, K.A. Mäder, E. Müller, N. Onda, and H. Sirringhaus: Phys. Rev. B 45 (1992) 13807.Google Scholar
  4. [4]
    A.L. Patterson: Phys. Rev. 46 (1934) 372.CrossRefADSMATHGoogle Scholar
  5. [5]
    Celia Rogero, Jose-Andel Martin-Gago, and Pedro L. de Andres: Phys. Rev. B 67 (2003) 073402.Google Scholar
  6. [6]
    C.Y. Chang, I.H. Hong, Y.C. Chou, and C.M. Wei: J. Phys. Chem. Solid 62 (2001) 1777.CrossRefADSGoogle Scholar
  7. [7]
    C.Y. Chang, Z.C. Lin, Y.C. Chou, and C.M. Wei: Phys. Rev. Lett. 83 (1999) 2580.CrossRefADSGoogle Scholar
  8. [8]
    M.A. Van Hove, W.H. Weinberg, and C.-M. Chan: Low-Energy Electron Diffraction, Springer-Verlag, Berlin-Heidelberg, 1986.Google Scholar
  9. [9]
    S.Y. Tong and Huasheng Wu: J. Phys.: Condens. Matter 14 (2002) 1231.CrossRefADSGoogle Scholar
  10. [10]
    M.G. Lagally, T.C. Ngoc, and M.B. Webb: Phys. Rev. Lett. 26 (1971) 1557.CrossRefADSGoogle Scholar
  11. [11]
    M.G. Lagally, T.C. Ngoc, and M.B. Webb: J. Vac. Sci. Technol. 9 (1972) 645.CrossRefGoogle Scholar
  12. [12]
    W.N. Unertl and M.B. Webb: Surf. Sci. 59 (1976) 373.CrossRefGoogle Scholar
  13. [13]
    H. Wu and S.Y. Tong: Phys. Rev. Lett. 87 (2001) 036101.Google Scholar
  14. [14]
    T. Abukawa, T. Yamazaki, K. Yajima, and S. Kono: in Book of Abstracts of 22nd European Conference on Surface Science (ECOSS-22), Prague, September 7–12, 2003, (Eds. V. Cháb, F. Máca, K. Prince, and K. Wandelt), 2003, p. 64.Google Scholar
  15. [15]
    W. Braun, H. Möller, and Y.-H. Zhang: J. Vac. Sci. Technol. B 16 (1998) 1507.CrossRefGoogle Scholar
  16. [16]
    A.L. Vazquez de Parga, J. de la Figuera, C. Ocal, and R. Miranda: Europhys. Lett. 18 (1992) 595.ADSGoogle Scholar
  17. [17]
    W. Weiss, M. Kutschera, U. Starke, M. Mozaffari, K. Reshöft, U. Köhler, and K. Heinz: Surf. Sci. 377–379 (1997) 861.CrossRefGoogle Scholar
  18. [18]
    U. Starke, W. Weiss, M. Kutschera, R. Bandorf, and K. Heinz: J. Appl. Phys. 91 (2002) 6154.CrossRefGoogle Scholar
  19. [19]
    J.M. Gallego, J. Alvarez, J.J. Hinarejos, E.G. Michel, and R. Miranda: Surf. Sci. 251–252 (1991) 59.CrossRefGoogle Scholar
  20. [20]
    I. Goldfarb: Surf. Sci. 554 (2004) L87.CrossRefADSGoogle Scholar
  21. [21]
    S. Walter, R. Bandorf, W. Weiss, K. Heinz, U. Starke, M. Strass, M. Bockstedte, and O. Pankratov: Phys. Rev. B 67 (2003) 085413.Google Scholar
  22. [22]
    A. Wawro, S. Suto, R. Czajka, and A. Kasuya: Phys. Rev. B 67 (2003) 195401.Google Scholar
  23. [23]
    S. Hajjar, G. Garreau, S. Pelletier, D. Bolmont, and C. Pirri: Phys. Rev. B 68 (2003) 033302.Google Scholar
  24. [24]
    S. Walter, F. Blobner, M. Krause, S. Müller, K. Heinz, and U. Starke: J. Phys.: Condens. Matter 15 (2003) 5207.CrossRefADSGoogle Scholar
  25. [25]
    D. Leong, M. Harry, K.J. Reeson, and K.P. Homewood: Nature 387 (1997) 686.CrossRefADSGoogle Scholar
  26. [26]
    A.L. Vazquez de Parga, J. de la Figuera, C. Ocal, and R. Miranda: Ultramicroscopy 42–44 (1992) 845.CrossRefGoogle Scholar
  27. [27]
    X. Wallart, J.P. Nys, and C. Tètelin: Phys. Rev. B 49 (1994) 5714.CrossRefADSGoogle Scholar
  28. [28]
    M. Krause, F. Blobner, L. Hammer, K. Heinz, and U. Starke: Phys. Rev. B 68 (2003) 125306.Google Scholar
  29. [29]
    B. Egert and G. Panzner: Phys. Rev. B 29 (1984) 2091.CrossRefADSGoogle Scholar
  30. [30]
    L. Pauling and A.M. Soldate: Acta Crystallogr. 1 (1948) 212.CrossRefGoogle Scholar
  31. [31]
    O. Romanyuk, K. Kataoka, F. Matsui, K. Hattori, and H. Daimon: in Meeting Abstracts of the 59th Annual Meeting of the Physical Society of Japan, March 27–30, Fukuoka, Japan, 59 1 part 4 (2004) 894.Google Scholar
  32. [32]
    A. Mascaraque, J. Avila, C. Teodorescu, M.C. Asensio, and E.G. Michel: Phys. Rev. B 55 (1997) 7315.CrossRefADSGoogle Scholar
  33. [33]
    A. Seubert, D.K. Saldin, J. Bernhardt, U. Starke, and K. Heinz: J. Phys.: Condens. Matter 12 (2000) 5527.CrossRefADSGoogle Scholar
  34. [34]
    H. Wu, S. Xu, S. Ma, W.P. Lau, M.H. Xie, and S.Y. Tong: Phys. Rev. Lett. 89 (2002) 216101.Google Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • Oleksandr Romanyuk
    • 1
  • Keita Kataoka
    • 2
  • Fumihiko Matsui
    • 2
  • Ken Hattori
    • 2
  • Hiroshi Daimon
    • 2
  1. 1.Institute of PhysicsAcad. Sci. CRPraha 6Czech Republic
  2. 2.Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, IkomaNaraJapan

Personalised recommendations