Czechoslovak Journal of Physics

, Volume 55, Issue 11, pp 1461–1466 | Cite as

Calculation of correlation functions in the Heisenberg spin-1/2 antiferromagnetic model

  • B. Si Lakhal
  • A. Abada


We derive the exact expression of the four-spinon contribution S4 to the dynamical correlation function S of the spin 1/2 isotropic (XXX) He isenberg model in the antiferromagnetic regime using the quantum group symmetry of the model. We first give the exact expression for the n-spinon contribution in the form of contour integrals and display known results regarding the two-spinon contribution S2. Then we specialize the n-spinon formula to the case n = 4 and compute three sum rules for S4 that the total S is known to satisfy exactly. These are: the total integrated intensity, the first frequency moment and the nearest-neighbor correlation function. We find that S4 corrects only by a small amount the contribution from S2.

Key words

antiferromagnetic Heisenberg spin chain exact dynamic structure function sum rules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D.A. Tennant, R.A. Cowley, S.E. Nagler, and A.M. Tsvelik: Phys. Rev. B 52 (1995) 13368. D.A. Tennant, S.E. Nagler, D. Weltz, G. Shirane, and K. Yamada: Phys. Rev. B 52 (1995) 13381. D.A. Tennant, T.G. Perring, R.A. Cowley, and S.E. Nagler: Phys. Rev. Lett. 70 (1993) 4003. S.E. Nagler, D.A. Tennant, R.A. Cowley, T.G. Perring, and S.K. Satija: Phys. Rev. B 44 (1991) 12361.ADSGoogle Scholar
  2. [2]
    M. Jimbo and T. Miwa: Algebraic Analysis of Solvable Lattice Models. American Mathematical Society, 1994.Google Scholar
  3. [3]
    O. Davies, O. Foda, M. Jimbo, T. Miwa, and A. Nakayashiki: Commun. Math. Phys. 151 (1993) 89.CrossRefMathSciNetGoogle Scholar
  4. [4]
    I.B. Frenkel and N.H. Jing: Proc. Natl. Acad. Sci. 85 (1988) 9373.MathSciNetADSGoogle Scholar
  5. [5]
    A. Abada, A.H. Bougourzi, and M.A. El Gradechi: Mod. Phys. Lett. A 8 (1993) 715.ADSGoogle Scholar
  6. [6]
    A.H. Bougourzi: Nucl. Phys. B 404 (1993) 457.CrossRefMathSciNetMATHADSGoogle Scholar
  7. [7]
    A.H. Bougourzi, M. Couture, and M. Kacir: Phys. Rev. B 54 (1996) 12669.CrossRefADSGoogle Scholar
  8. [8]
    A. Abada, A.H. Bougourzi, and B. Si Lakhal: Nucl. Phys. B 497 [FS] (1997) 733.CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    A.H. Bougourzi: Mod. Phys. Lett B 10 (1996) 1237.ADSGoogle Scholar
  10. [10]
    B. Si Lakhal and A. Abada: J. Phys. A: Math. Gen. 37 (2004) 497.MathSciNetADSGoogle Scholar
  11. [11]
    P.C. Hohenberg and W.F. Brinkman: Phys. Rev. B 10 (1974) 128.CrossRefADSGoogle Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2005

Authors and Affiliations

  • B. Si Lakhal
    • 1
  • A. Abada
    • 2
  1. 1.Departement de PhysiqueUniversite de BlidaBlidaAlgeria
  2. 2.Physics Department, Faculty of ScienceUnited Arab Emirates UniversityAl AinUnited Arab Emirates

Personalised recommendations