Advertisement

Czechoslovak Journal of Physics

, Volume 55, Issue 11, pp 1357–1364 | Cite as

N = 4 supersymmetric Eguchi-Hanson sigma model in d = 1

  • Cestmir Burdik
  • Sergey Krivonos
  • Andrey Shcherbakov
Article

Abstract

We show that it is possible to construct a supersymmetric mechanics with four supercharges possessing not conformally flat target space. A general idea of constructing such models is presented. A particular case with Eguchi-Hanson target space is investigated in detail: we present the standard and quotient approaches to get the Eguchi-Hanson model, demonstrate their equivalence, give a full set of nonlinear constraints, study their properties and give an explicit expression for the target space metric.

Key words

supersymmetric mechanics nonlinear off-shell constraints Eguchi-Hanson sigma model hyper Kahler manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.A. Coles and G. Papadopoulos: Class. Quant. Grav. 7 (1990) 427.MathSciNetADSGoogle Scholar
  2. [2]
    C.M. Hull: hep-th/9910028.Google Scholar
  3. [3]
    G. Papadopoulos: Class. Quant. Grav. 17 (2000) 3715; hep-th/0002007.MathSciNetMATHADSGoogle Scholar
  4. [4]
    G.W. Gibbons, G. Papadopoulos, and K.S. Stelle: Nucl. Phys. B 508 (1997) 623; hep-th/9706207.CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    E. Ivanov, S. Krivonos, and V. Leviant: J. Phys. A: Math. Gen. 22 (1989) 4201.MathSciNetADSGoogle Scholar
  6. [6]
    E. Ivanov and A.V. Smilga: Phys. Lett. B 257 (1991) 79.MathSciNetADSGoogle Scholar
  7. [7]
    E. Ivanov, S. Krivonos, and A. Pashnev: Class. Quant. Grav. 8 (1991) 19.MathSciNetADSGoogle Scholar
  8. [8]
    V.P. Berezovoj and A. Pashnev: Class. Quant. Grav. 8 (1991) 2141.MathSciNetADSGoogle Scholar
  9. [9]
    A. Maloney, M. Spradlin, and A. Strominger: JHEP 0204 (2002) 003; hep-th/9911001.MathSciNetADSGoogle Scholar
  10. [10]
    J.A. de Azcarraga, J.M. Izquierdo, J.C. Perez Bueno, and P.K. Townsend: Phys. Rev. D 59 (1999) 084015; hep-th/9810230.MathSciNetADSGoogle Scholar
  11. [11]
    S. Hellerman and J. Polchinski: in The many faces of the superworld, (Ed. M.A. Shifman), p. 142; hep-th/9908202.Google Scholar
  12. [12]
    E.E. Donets, A. Pashnev, V.O. Rivelles, D.P. Sorokin, and M. Tsulaia: Phys. Lett. B 484 (2000) 337; hep-th/0004019.MathSciNetADSGoogle Scholar
  13. [13]
    E.E. Donets, A. Pashnev, J. Juan Rosales, and M.M. Tsulaia: Phys. Rev. D 61 (2000) 043512; hep-th/9907224.CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    E. Ivanov, S. Krivonos, and O. Lechtenfeld: JHEP 0303 (2003) 014; hep-th/0212303.MathSciNetADSGoogle Scholar
  15. [15]
    E. Ivanov, S. Krivonos, and O. Lechtenfeld: Class. Quant. Grav. 21 (2004) 1031; hep-th/0310299.MathSciNetADSGoogle Scholar
  16. [16]
    E. Ivanov and O. Lechtenfeld: JHEP 0309 (2003) 073; hep-th/0307111.MathSciNetADSGoogle Scholar
  17. [17]
    S. Bellucci and A. Nersessian: Nucl. Phys. Proc. Suppl. 102 (2001) 227; hep-th/0103005.MathSciNetADSGoogle Scholar
  18. [18]
    S. Bellucci and A. Nersessian: Phys. Rev.D 64 (2001) 021702; hep-th/0101065.MathSciNetADSGoogle Scholar
  19. [19]
    S. Bellucci, A. Beylin, S. Krivonos, A. Nersessian, and E. Orazi: Phys. Lett. B 616 (2005) 228; hep-th/0503244.MathSciNetADSGoogle Scholar
  20. [20]
    F. Delduc and S. Krivonos: N = 4, d = 1 Hyper-Kahler sigma models: Taub-NUT case, in preparation.Google Scholar
  21. [21]
    A. Galperin, E. Ivanov, V. Ogievetsky, and P.K. Townsend: Class. Quant. Grav. 3 (1986) 625.MathSciNetADSGoogle Scholar
  22. [22]
    E. Ivanov and G. Valent: Nucl. Phys. B 576 (2000) 543; hep-th/0001165.CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    A.S. Galperin, E. Ivanov, V.I. Ogievetsky, and E.S. Sokatchev: Harmonic superspace. University Press, Cambridge, UK, 2001, 306 pp.Google Scholar
  24. [24]
    T.L. Curtright and D.Z. Freedman: Phys. Lett. B 90 (1980) 71.ADSGoogle Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2005

Authors and Affiliations

  • Cestmir Burdik
    • 1
  • Sergey Krivonos
    • 2
  • Andrey Shcherbakov
    • 2
  1. 1.Department of MathematicsCzech Technical UniversityPrague 2Czech Republic
  2. 2.Bogoliubov Laboratory of Theoretical PhysicsJINRDubnaRussia

Personalised recommendations