Czechoslovak Journal of Physics

, Volume 55, Issue 9, pp 1107–1112 | Cite as

Properties of exceptional points in some many body models

  • W. D. Heiss


The Lipkin model is a popular toy model, first used in nuclear physics, to understand quantum phase transitions including symmetry breaking. However, the thermodynamic limit, that is the limit of large particle numbers, appears rather elusive. The pattern of the exceptional points of the model, in particular their behavior with increasing particle numbers, is presented. They may give a clue as to the properties of the Lipkin Hamiltonian in the thermodynamic limit.

Key words

phase transitions singularities of spectra non-Hermitian operators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H.J. Lipkin, N. Meshkov, and N. Glick: Nucl. Phys. A 62 (1965) 188; 199; 211.MathSciNetGoogle Scholar
  2. [2]
    P. Ring and P. Schuck: The Nuclear Many Body Problem, Springer, New York, 1980.Google Scholar
  3. [3]
    Feng Pan and J.P. Draayer: Phys. Lett. B 451 (1999) 1.ADSGoogle Scholar
  4. [4]
    F.G. Scholtz, B.H. Bartlett, and H.B. Geyer: Phys. Rev. Lett. 91 (2004) 80602. J.N. Kriel, A. Morozov, and F.G. Scholtz: J. Phys. A 38 (2005) 205.Google Scholar
  5. [5]
    W.D. Heiss, F.G. Scholtz, and H.B. Geyer: J. Phys. A 38 (2005) 1843.CrossRefADSGoogle Scholar
  6. [6]
    T. Kato: Perturbation theory of linear operators, Springer, Berlin, 1966.Google Scholar
  7. [7]
    W.D. Heiss: Z. Phys. A: Atom. Nucl. 329 (1988) 133.Google Scholar
  8. [8]
    W.D. Heiss and A.L. Sannino: J. Phys A: Math. Gen. 23 (1990) 1167.CrossRefADSGoogle Scholar
  9. [9]
    F. Leyvraz and W.D. Heiss: Phys. Rev. Lett. 95 (2005) 050402.CrossRefADSGoogle Scholar
  10. [10]
    S. Dusuel and J. Vidal: Phys. Rev. Lett. 93 (2004) 237204.ADSGoogle Scholar
  11. [11]
    W.D. Heiss: Czech. J. Phys. 54 (2004) 1091.CrossRefGoogle Scholar
  12. [12]
    T. Khalil and J. Richert: J. Phys. A: Math. Gen. 37 (2004) 4851.CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    C.N. Yang and T.D. Lee: Phys. Rev. 87 (1952) 410.CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    P. Borrmann, O. Mulken, and J. Harting: Phys. Rev. Lett. 84 (2000) 3511.CrossRefADSGoogle Scholar
  15. [15]
    P. Cejnar, S. Heinze, and J. Dobes: Preprint nucl-th/0406060.Google Scholar
  16. [16]
    W.D. Heiss and A.L. Sannino: Phys. Rev. A 43 (1991) 4159.CrossRefADSGoogle Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2005

Authors and Affiliations

  • W. D. Heiss
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of StellenboschSouth Africa

Personalised recommendations