Advertisement

Czechoslovak Journal of Physics

, Volume 55, Issue 6, pp 643–650 | Cite as

A Method for Solving Initial-value Problem and Finding Exact Solutions of Nonlinear Partial Differential Equations

  • Cheng-lin Bai
  • Hong Zhao
Article

Abstract

Homogeneous balance method for solving nonlinear partial differential equation(s) is extended to solving initial-value problem and getting new solution(s) from a known solution of the equation(s) under consideration. The approximate equations for long water waves are chosen to illustrate the method, infinitely many simple-solitary-wave solutions and infinitely many rational function solutions, especially the closed form of the solution for initial-value problem, are obtained by using the extended homogeneous balance method given here.

Key words

extended homogeneous balance method exact solutions initial-value problem approximate equations for long water waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Satsuma et al.: J. Phys. Soc. Jpn. 9 (1992) 3096.CrossRefGoogle Scholar
  2. [2]
    C.L. Bai: Phys. Lett. A 288 (2001) 191.CrossRefMathSciNetGoogle Scholar
  3. [3]
    B.Q. Konopelhenko: Inverse Problem 4 (1988) 151.CrossRefGoogle Scholar
  4. [4]
    R. Dodd and A. Fordy: Phys. Lett. A 89 (1982) 168.CrossRefGoogle Scholar
  5. [5]
    C.L. Bai: Z. Naturforsch. A 58 (2003) 397.Google Scholar
  6. [6]
    R. Hirota and J. Satsuma: Phys. Lett. A 85 (1981) 407.CrossRefGoogle Scholar
  7. [7]
    C.L. Bai and H. Zhao: Czech. J. Phys. 54 (2004) 927.CrossRefMathSciNetGoogle Scholar
  8. [8]
    M.L. Wang et al.: Phys. Lett. A 216 (1996) 67.CrossRefGoogle Scholar
  9. [9]
    M. Boiti, J.J. Leon, and F. Pempinelli: Inverse Problem 3 (1987) 371.CrossRefGoogle Scholar
  10. [10]
    C.L. Bai: Commun. Theor. Phys. 37 (2002) 645; 40 (2003) 147. C. L. Bai and H. Zhao: Commun. Theor. Phys. 41 (2004) 521; 42 (2004) 189.MathSciNetGoogle Scholar
  11. [11]
    G. Paquin and P. Winternitz: Physica D 46 (1990) 122.Google Scholar
  12. [12]
    C.L. Bai: Rep. Math. Phys. 53 (2004) 291.CrossRefMathSciNetGoogle Scholar
  13. [13]
    G.B. Witham: Proc. R. Soc. A 299 (1967) 6.Google Scholar
  14. [14]
    L.T.F. Broer: Appl. Sci. Res. 31 (1975) 377.CrossRefGoogle Scholar
  15. [15]
    B.A. Kupershmidt: Commun. Math. Phys. 99 (1985) 51.CrossRefGoogle Scholar
  16. [16]
    S.Y. Lou et al.: J. Phys. A: Math. Gen. 26 (1993) 4679.CrossRefGoogle Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2005

Authors and Affiliations

  • Cheng-lin Bai
    • 1
  • Hong Zhao
    • 1
  1. 1.Physics Science and Information Engineering SchoolLiaocheng UniversityLiaochengChina

Personalised recommendations