Czechoslovak Journal of Physics

, Volume 55, Issue 5, pp 563–578 | Cite as

Neutron Transmission of Single-crystal Sapphire Filters

  • M. Adib
  • M. Kilany
  • N. Habib
  • M. Fathallah


An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum cystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons.


neutron transmission sapphire neutron filters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.K. Iyengar: in Thermal Neutron Scattering (Ed. P.A. Egelstaff), Academic Press, 1965, p. 130.Google Scholar
  2. [2]
    J.A. Harvey, H.A. Mook, N.W. Hill, and O. Shahal: in Int. Conf. on Nuclear Data for Science and Technology, Antwerp 1982, (Ed. K.H. Bockhoff), ECSC, EEC, EAEC, Brussels and Luxembourg, 1983, p. 961.Google Scholar
  3. [3]
    M. Adib and M. Kilany: J. Rad. Phys. Chem. 66 (2003) 81.CrossRefGoogle Scholar
  4. [4]
    M. Adib, N. Habib, A. Ashry, and M. Fathallah: Ann. Nucl. Energy 30 (2003) 1905.CrossRefGoogle Scholar
  5. [5]
    M. Adib, K. Naguib, A. Ashry, and M. Fathallah: Ann. Nucl. Energy 29 (2002) 1119.CrossRefGoogle Scholar
  6. [6]
    H.F. Nieman, D.C. Tennant, and G. Dolling: Rev. Sci. Instrum. 51 (1980) 1299.CrossRefGoogle Scholar
  7. [7]
    D.F.R. Mildner, M. Arif, C.A. Stone, and R.K. Crawford: J. Appl. Crystallogr. 26 (1993) 438.CrossRefGoogle Scholar
  8. [8]
    D.F.R. Mildner and G.P. Lamaze: J. Appl. Crystallogr. 31 (1998) 835.CrossRefGoogle Scholar
  9. [9]
    H.A. Mook and W.A Hamilton: in Advanced Optics for Neutron Scattering Research, Laboratory Directed Research and Development Annual Report, FY-ORNL, 2001.Google Scholar
  10. [10]
    A.K. Freund: Nucl. Instrum. Methods 213 (1983) 495.CrossRefGoogle Scholar
  11. [11]
    R. Born, D. Hohlwein, J.R. Schneider, and K. Kakurai: Nucl. Instrum. Methods Phys. Res. A 262 (1987) 359.Google Scholar
  12. [12]
    V.F. Sears: Neutron News 3 (1992) 26.Google Scholar
  13. [13]
    M.A Abramowitz and I.A. Stegun: Handbook of mathematical functions, Appl. Math. Series-55, Nat. Bureau of Standards, 1964, p. 607.Google Scholar
  14. [14]
    J.M. Cassels: Prog. Nucl. Phys. 1 (1950) 185.Google Scholar
  15. [15]
    K. Naguib and M. Adib: J. Physics D: Appl. Phys. 29 (1996) 1441.CrossRefGoogle Scholar
  16. [16]
    K. Naguib and M. Adib: Ann. Nucl. Energy 25 (1998) 1553.CrossRefGoogle Scholar
  17. [17]
    M. Adi and N. Habib: Czech. J. Phys. 53 (2003) 321.CrossRefGoogle Scholar
  18. [18]
    D.R. Lide: in Handbook of Chemistry and Physics, 7th edition, CRC Press, USA, 1995, p. 139.Google Scholar
  19. [19]
    C. Roberto: in Bulk and Surface Structure of Alumina, Licentiate thesis, Chalmers Univ. of Technology, Goteborg (Sweden), 1998.Google Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2005

Authors and Affiliations

  • M. Adib
    • 1
  • M. Kilany
    • 1
  • N. Habib
    • 1
  • M. Fathallah
    • 1
  1. 1.Reactor Physics Dept., Nuclear Research CenterEgyptian Atomic Energy AuthorityCairoEgypt

Personalised recommendations