Czechoslovak Journal of Physics

, Volume 55, Issue 2, pp 119–138 | Cite as

Asymptotic directional structure of radiation for fields of algebraic type D

  • Pavel Krtouš
  • Jiří Podolský


The directional behavior of dominant components of algebraically special spin-s fields near a spacelike, timelike or null conformal infinity is studied. By extending our previous general investigations, we concentrate on fields which admit a pair of equivalent algebraically special null directions, such as the Petrov type-D gravitational fields or algebraically general electromagnetic fields. We introduce and discuss a canonical choice of the reference tetrad near infinity in all possible situations, and we present the corresponding asymptotic directional structures using the most natural parametrizations.

Key words

gravitational radiation asymptotic structure cosmological constant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Krtouš and J. Podolský: Phys. Rev. D 68 (2003) 024005.ADSGoogle Scholar
  2. [2]
    J. Podolský, M. Ortaggio, and P. Krtouš: Phys. Rev. D 68 (2003) 124004.ADSMathSciNetGoogle Scholar
  3. [3]
    P. Krtouš, J. Podolský, and J. Bičák: Phys. Rev. Lett. 91 (2003) 061101.ADSMathSciNetGoogle Scholar
  4. [4]
    P. Krtouš and J. Podolský: Phys. Rev. D 69 (2004) 084023.ADSMathSciNetGoogle Scholar
  5. [5]
    R. Penrose: in Relativity, Groups and Topology, Les Houches 1963, (Eds. C. DeWitt and B. DeWitt), Gordon and Breach, New York, 1964, p. 563.Google Scholar
  6. [6]
    R. Penrose: Proc. R. Soc. Lond., A 284 (1965) 159.CrossRefMATHADSMathSciNetGoogle Scholar
  7. [7]
    R. Penrose: in The Nature of Time (Ed. T. Gold), Cornell University Press, Ithaca, New York, 1967, p. 42.Google Scholar
  8. [8]
    P. Krtouš and J. Podolský: Class. Quantum Grav. 21 (2004) R233–273.MATHADSGoogle Scholar
  9. [9]
    R. Penrose and W. Rindler: Spinors and Space-Time, Cambridge University Press, Cambridge (England), 1984; 1986.MATHGoogle Scholar
  10. [10]
    H. Stephani et al.: Exact Solutions of Einstein’s Field Equations, Second Edition, Cambridge University Press, Cambridge (England), 2002.Google Scholar
  11. [11]
    J. Bičák and P. Krtouš: Phys. Rev. Lett. 88 (2002) 211101.ADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Pavel Krtouš
    • 1
  • Jiří Podolský
    • 1
  1. 1.Institute of Theoretical Physics, Faculty of Mathematics and PhysicsCharles UniversityPraha 8Czech Republic

Personalised recommendations