Advertisement

Czechoslovak Journal of Physics

, Volume 53, Supplement 1, pp A479–A486 | Cite as

Extraction of transplutionium and rare-earth elements, molybdenum and iron with zirconium salt of dibutyl phosphoric acid

  • B. Ya. Zilberman
  • Yu. S. Fedorov
  • O. V. Shmidt
  • N. D. Goletsky
  • S. Yu. Sukhareva
  • E. A. Puzikov
  • D. N. Suglobov
  • L. G. Mashirov
  • G. R. Choppin
Part II Session 6: Separation Methods, Speciation

Abstract

Zirconium salt of dibutyl phosphoric acid (ZS-HDBP) dissolved in dilute tributyl phosphate (TBP) is proposed as a solvent for separation of transplutonium and rare-earth elements (TPE, RE), including yttrium, from high-level waste in the presence of molybdenum and iron. The optimum HDBP:Zr ratio is 9 for RE and TPE extraction and is 12.5 for Mo. IR spectra indicate formation of Zr(DBP)4(HDBP)4 complex as a base of solvation. HNO3 depresses RE and TPE extraction, while Mo extraction is characterised by a minimum at 2.5 mol/L HNO3. Presence of TBP in the solvent, independently of the used diluent, leads to reduction of the distribution coefficients, but ZS-HDBP extraction capacity for the above elements is increased, as well as solubility of their solvates.

Two types of complexes M(DBP)3 and MNO3(DBP)2 are formed at RE and TPE extraction by ZS-HDBP in dilute TBP. Molybdenum extraction is based both on cation exchange and on Mo solvation with HDBP as a neutral ligand. Iron extraction is formally similar to that of Mo, being influenced by the latter if both metals are present in the solution.

Keywords

Nitric Acid Concentration HNO3 Concentration Iron Extraction Transplutonium Zirconium Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Weaver B. S. and Kappelmann F. A.: J. Inorg. Nucl. Chem. 30 (1968) 263.CrossRefGoogle Scholar
  2. [2]
    Solovkin A. S., Krutikov P. G. and Panteleeva A. N.: Zh. Neorg. Khim (Rus) 14 (1969) 3376.Google Scholar
  3. [3]
    Teterin E. G., Shesterikov N. N., Krutikov P. G. and Solovkin A. S.: Zh. Neorg. Khim. (Rus) 16 (1971) 146.Google Scholar
  4. [4]
    Fedorov Yu. S. et al.: Radiochemistry 42 (2000) 338.Google Scholar
  5. [5]
    Sinegribova O. A. et al.: Zh. Neorg. Khim (Rus) 20 (1975) 189.Google Scholar
  6. [6]
    Stoyanov E. S. et al.: Solv. Extr. & Ion Exch. 9 (1991) 787.CrossRefGoogle Scholar
  7. [7]
    Vashman A. A. et al.: Zh. Neorg. Khim (Rus) 33 (1988) 2896.Google Scholar
  8. [8]
    Zilberman B. Ya. et al.: Russian Patent No. 2106030, Bull, No. 6 (1998).Google Scholar
  9. [9]
    Zelikman A. N. and Nerezov V. M.: Zh. Neorg. Khim. (Rus) 14 (1969) 1307.Google Scholar
  10. [10]
    Kolarik Z.: J. Inorg. Nucl. Chem. 35 (1973) 2025.CrossRefGoogle Scholar
  11. [11]
    Constantinescu I., Vladulescu M. and Constantinescu I.: Fresen. Z. Anal. Chem. 324 (1986) 137.CrossRefGoogle Scholar
  12. [12]
    Kiss A.: Magyar. Kem. Folyoirat. 68 (1962) 106.Google Scholar
  13. [13]
    Nikolotova Z.I.: Ekstraktsiya nejtralnymi organicheskimi soedineniyami — Spravochnik (in Russian — Extraction with neutral organic compounds — Handbook). Energpatomizdat, Moscow, 1999, p. 156–179.Google Scholar
  14. [14]
    Gorelova A. V. et al.: Zh. Neorg. Khim. (Rus) 31 (1986) 2065.Google Scholar
  15. [15]
    Zilberman B. Ya. et al.: Radiochemistry 42 (2000) 345.ADSGoogle Scholar
  16. [16]
    Zilberman B.Ya. et al.: in Proc. Int. Conf. “Global' 01”, Paris 2001, SFEN, Paris, No. 156.Google Scholar

Copyright information

© Institute of Physics, Acad. Sci. CR 2003

Authors and Affiliations

  • B. Ya. Zilberman
    • 1
  • Yu. S. Fedorov
    • 1
  • O. V. Shmidt
    • 1
  • N. D. Goletsky
    • 1
  • S. Yu. Sukhareva
    • 1
  • E. A. Puzikov
    • 1
  • D. N. Suglobov
    • 1
  • L. G. Mashirov
    • 1
  • G. R. Choppin
    • 2
  1. 1.V.G. Khlopin Radium InstituteSaint PetersburgRussia
  2. 2.Florida State UniversityTallahasseeUSA

Personalised recommendations