Advertisement

Czechoslovak Journal of Physics

, Volume 53, Supplement 1, pp A247–A256 | Cite as

Rutherford backscatering spectroscopy of optically silver doped amorphous chalcogenides

  • T. Wágner
  • M. Krbal
  • Mir. Vlček
  • M. Frumar
  • V. Peřina
  • A. Macková
  • V. Hnatowitz
  • S. O. Kasap
  • Mil. Vlček
Session 2: Nuclear Analytical Methods
  • 20 Downloads

Abstract

Kinetics of optically-induced reaction between silver and Ge30S70 films was measured by monitoring the change in thickness of the undoped chalcogenide using a modified computer-controlled reflectivity technique. Silver concentration profiles during optically-induced solid state reaction were traced by the means of Rutherford backscattering spectroscopy (RBS). The composition of the Ge−S films was chosen to be Ge30S70 which is the most favourable for optically-induced solid state reaction, because it yields a homogeneous photodoped products. A new technique of step-by-step optically-induced dissolution and diffusion of Ag into Ge30S70 amorphous films, which has allowed to design films with exact silver concentration and to study their properties, is reported. The host Ge30S70 films were photodoped by consecutive dissolving a thin (≈20 nm) layer of silver, which resulted in homogeneous films of good optical quality. The silver concentration of the films ranged between 0 and 31.8 at. %. We have analysed in detail the influence of the silver doping in the host material on optical and thermal properties, and its structure. The photodoped films produced a single-phase homogeneous material with composition close to Ag2GeS3 in some of them. Results of all analytical techniques have helped to understand the processes taking place during silver photodissolution.

Keywords

Rutherford Backscatter Spectroscopy Chalcogenide Glass Silver Content Silver Concentration Rutherford Backscatter Spectroscopy Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Kolobov A. V. and Tanaka K.: Hand on Advanced Electronic and Photonic Materials, Academic Press, Tokyo 2000.Google Scholar
  2. [2]
    Oldale J. M. and Elliott S. R.: J. Non-Cryst. Solids 128 (1991) 255.CrossRefADSGoogle Scholar
  3. [3]
    Wagner T.: Docent Thesis, University of Pardubice, Pardubice, 2001.Google Scholar
  4. [4]
    Kawaguchi T. and Maruno S.: J. Appl. Phys. 77 (1995) 628.CrossRefADSGoogle Scholar
  5. [5]
    Kawaguchi T., Maruno S. and Elliott S. R.: J. Appl. Phys. 79 (1996) 9096.CrossRefADSGoogle Scholar
  6. [6]
    Kawaguchi T. and Maruno S.: Japan J. Appl. Phys. 33 (1994) 6470.CrossRefGoogle Scholar
  7. [7]
    Eneva J., Gushterov A., Tomerova B. and Mednikarov B.: J. Mat. Sci.: Materials in Electronics 10 (1999) 529.CrossRefGoogle Scholar
  8. [8]
    Robinel E., Carette B. and Ribes M.: J. Non-Cryst. Solids 57 (1983) 49.CrossRefADSGoogle Scholar
  9. [9]
    Ohta T.: J. Optoelectr. and Adv. Materials 3 (2001) 609.Google Scholar
  10. [10]
    Wagner T., Frumar M., Kasap S. O., Vlcek Mir. and Vlcek Mil.: J. Optoelectr. and Adv. Materials 3 (2001) 227.Google Scholar
  11. [11]
    Wagner T., Perina V., Vlcek M., Frumar M., Rauhala E., Saarilahti J. and Ewen P. J. S.: J. Non-Cryst. Solids 212 (1997) 157.CrossRefADSGoogle Scholar
  12. [12]
    Wagner T., et al.: Solid State Ionics 141–142 (2001) 387.CrossRefGoogle Scholar
  13. [13]
    Saarilahti J., Rauhala E.: Nucl. Instrum. Methods B64 (1992) 734.CrossRefADSGoogle Scholar
  14. [14]
    Kosa T. I., Wagner T., Ewen P. J. S. and Owen A. E., Phil Mag. B 71 (1995) 311.CrossRefGoogle Scholar
  15. [15]
    Swanepoel R., J. Phys. E.: Sci. Instrum. 16 (1983) 1214.CrossRefADSGoogle Scholar
  16. [16]
    Krbal M. and Wagner T.: to be published.Google Scholar
  17. [17]
    Kawamoto Y. and Tsuchihashi J.: J. A. Ceram. Soc. 54 (1971) 131.CrossRefGoogle Scholar
  18. [18]
    Wagner T., Kasap S. O., Vlcek M., Sklenar A. and Stronski A., J. Mat. Sci. 33 (1998) 5581.CrossRefGoogle Scholar
  19. [19]
    Lucovski G., Galeener F. L., Keezer R. C., Geils R. H. and Six H. A.: Phys. Rev. B 10 (1974) 5134.CrossRefADSGoogle Scholar
  20. [20]
    Jackson K., Briley A., Grossman S., Porezag D. V. and Pederson M. R.: Phys. Rev B 60 (1999) R14985.CrossRefADSGoogle Scholar
  21. [21]
    Takebe H., Maeda H. and Morinaga K.: J. Non-Cryst. Solids 291 (2001) 14.CrossRefADSGoogle Scholar
  22. [22]
    Schmalzried H.: Solid State Reactions, Academic Press, New York, 1974.Google Scholar
  23. [23]
    Wemple S. H. and Di Domenico M.: Phys. Rev. B 3 (1971) 3767.CrossRefGoogle Scholar

Copyright information

© Institute of Physics, Acad. Sci. CR 2003

Authors and Affiliations

  • T. Wágner
    • 1
  • M. Krbal
    • 1
  • Mir. Vlček
    • 1
  • M. Frumar
    • 1
  • V. Peřina
    • 2
  • A. Macková
    • 2
  • V. Hnatowitz
    • 2
  • S. O. Kasap
    • 3
  • Mil. Vlček
    • 4
  1. 1.Department of General and Inorganic ChemistryUniversity of PardubicePardubiceCzech Republic
  2. 2.Nuclear Physics Institute of Academy of Sciences of CRŘež u PrahyCzech Republic
  3. 3.Department of Electrical EngineeringUniversity of SaskatchewanSaskatoonCanada
  4. 4.Joint Laboratory of Solid State Chemistry of Czech Academy of Sciences and University of PardubicePardubiceCzech Republic

Personalised recommendations