Skip to main content
Log in

Rutherford backscatering spectroscopy of optically silver doped amorphous chalcogenides

  • Session 2: Nuclear Analytical Methods
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Kinetics of optically-induced reaction between silver and Ge30S70 films was measured by monitoring the change in thickness of the undoped chalcogenide using a modified computer-controlled reflectivity technique. Silver concentration profiles during optically-induced solid state reaction were traced by the means of Rutherford backscattering spectroscopy (RBS). The composition of the Ge−S films was chosen to be Ge30S70 which is the most favourable for optically-induced solid state reaction, because it yields a homogeneous photodoped products. A new technique of step-by-step optically-induced dissolution and diffusion of Ag into Ge30S70 amorphous films, which has allowed to design films with exact silver concentration and to study their properties, is reported. The host Ge30S70 films were photodoped by consecutive dissolving a thin (≈20 nm) layer of silver, which resulted in homogeneous films of good optical quality. The silver concentration of the films ranged between 0 and 31.8 at. %. We have analysed in detail the influence of the silver doping in the host material on optical and thermal properties, and its structure. The photodoped films produced a single-phase homogeneous material with composition close to Ag2GeS3 in some of them. Results of all analytical techniques have helped to understand the processes taking place during silver photodissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolobov A. V. and Tanaka K.: Hand on Advanced Electronic and Photonic Materials, Academic Press, Tokyo 2000.

    Google Scholar 

  2. Oldale J. M. and Elliott S. R.: J. Non-Cryst. Solids 128 (1991) 255.

    Article  ADS  Google Scholar 

  3. Wagner T.: Docent Thesis, University of Pardubice, Pardubice, 2001.

  4. Kawaguchi T. and Maruno S.: J. Appl. Phys. 77 (1995) 628.

    Article  ADS  Google Scholar 

  5. Kawaguchi T., Maruno S. and Elliott S. R.: J. Appl. Phys. 79 (1996) 9096.

    Article  ADS  Google Scholar 

  6. Kawaguchi T. and Maruno S.: Japan J. Appl. Phys. 33 (1994) 6470.

    Article  Google Scholar 

  7. Eneva J., Gushterov A., Tomerova B. and Mednikarov B.: J. Mat. Sci.: Materials in Electronics 10 (1999) 529.

    Article  Google Scholar 

  8. Robinel E., Carette B. and Ribes M.: J. Non-Cryst. Solids 57 (1983) 49.

    Article  ADS  Google Scholar 

  9. Ohta T.: J. Optoelectr. and Adv. Materials 3 (2001) 609.

    Google Scholar 

  10. Wagner T., Frumar M., Kasap S. O., Vlcek Mir. and Vlcek Mil.: J. Optoelectr. and Adv. Materials 3 (2001) 227.

    Google Scholar 

  11. Wagner T., Perina V., Vlcek M., Frumar M., Rauhala E., Saarilahti J. and Ewen P. J. S.: J. Non-Cryst. Solids 212 (1997) 157.

    Article  ADS  Google Scholar 

  12. Wagner T., et al.: Solid State Ionics 141–142 (2001) 387.

    Article  Google Scholar 

  13. Saarilahti J., Rauhala E.: Nucl. Instrum. Methods B64 (1992) 734.

    Article  ADS  Google Scholar 

  14. Kosa T. I., Wagner T., Ewen P. J. S. and Owen A. E., Phil Mag. B 71 (1995) 311.

    Article  Google Scholar 

  15. Swanepoel R., J. Phys. E.: Sci. Instrum. 16 (1983) 1214.

    Article  ADS  Google Scholar 

  16. Krbal M. and Wagner T.: to be published.

  17. Kawamoto Y. and Tsuchihashi J.: J. A. Ceram. Soc. 54 (1971) 131.

    Article  Google Scholar 

  18. Wagner T., Kasap S. O., Vlcek M., Sklenar A. and Stronski A., J. Mat. Sci. 33 (1998) 5581.

    Article  Google Scholar 

  19. Lucovski G., Galeener F. L., Keezer R. C., Geils R. H. and Six H. A.: Phys. Rev. B 10 (1974) 5134.

    Article  ADS  Google Scholar 

  20. Jackson K., Briley A., Grossman S., Porezag D. V. and Pederson M. R.: Phys. Rev B 60 (1999) R14985.

    Article  ADS  Google Scholar 

  21. Takebe H., Maeda H. and Morinaga K.: J. Non-Cryst. Solids 291 (2001) 14.

    Article  ADS  Google Scholar 

  22. Schmalzried H.: Solid State Reactions, Academic Press, New York, 1974.

    Google Scholar 

  23. Wemple S. H. and Di Domenico M.: Phys. Rev. B 3 (1971) 3767.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgements: The authors thanks grants 203/02/0087, 203/00/0085 of the Grant Agency of Czech Republic and to financial support of LN00A028 and VZ no. 253100001 of Ministry of Education, Youth and Sports, CR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wágner, T., Krbal, M., Vlček, M. et al. Rutherford backscatering spectroscopy of optically silver doped amorphous chalcogenides. Czech J Phys 53 (Suppl 1), A247–A256 (2003). https://doi.org/10.1007/s10582-003-0032-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-003-0032-9

Keywords

Navigation