Czechoslovak Journal of Physics

, Volume 53, Supplement 1, pp A91–A96 | Cite as

Comparative analysis of cesium and potassium uptake in onion Allium cepa L.

  • P. Ł. Urban
  • G. Bystrzejewska-Piotrowska
Session 1: Radionuclides in the Environment, Radioecology


Cesium uptake in onion (from 0.3 mM CsCl solution traced with 137CsCl) has been examined. The highest uptake occurred at pH 4–5 and it decreased with increasing pH. The intensity of Cs translocation depended on acidity of the solution. For acidic solutions, translocation of cesium into bulbs and leaves was greater than in case of alkaline solutions, where most of the cesium remained in the roots. Addition of potassium into the solutions (millimolar K concentrations) inhibits Cs uptake. The potassium pH-influx/efflux characteristic does not coincide with the Cs uptake.


Cesium Vegetation Period Potassium Uptake Allium Cepa Environmental Radioactivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Mietelski J. W., Jasińska M., Kozak K. and Ochab E.: Applied Radiation and Isotopes 47 (1996) 1089.CrossRefGoogle Scholar
  2. [2]
    Rühm W., Yoshida S., Muramatsu Y., Steiner M. and Wirth E.: Journal of Environmental Radioactivity 45 (1999) 253.CrossRefGoogle Scholar
  3. [3]
    Fesenko S. V., et al.: Radiation and Environmental Biophysics 40 (2001) 105.CrossRefGoogle Scholar
  4. [4]
    Piercow L. A.: Sztuczne źródła promieniowania jonizującego, OloEJ, Warszawa, 1976.Google Scholar
  5. [5]
    Zhu Y.-G., Shaw G., Nisbet A. F. and Wilkins B.T.: Radiation and Environmental Biophysics 39 (2000) 283.CrossRefGoogle Scholar
  6. [6]
    White P. J. and Broadley M. R.: New Phytologist 147 (2000) 241.CrossRefGoogle Scholar
  7. [7]
    Mollah A. S., Begum A. and Ullah S. M.: Radiation and Environmental Biophysics 37 (1998) 125.CrossRefGoogle Scholar
  8. [8]
    Staunton S. and Levacic P.: Journal of Environmental Radioactivity 45 (1999) 161.CrossRefGoogle Scholar
  9. [9]
    Koch-Steindl H. and Pröhl G.: Radiation and Environmental Biophysics 40 (2001) 93.CrossRefGoogle Scholar
  10. [10]
    Smolders E., Sweeck L., Merckx R. and Cremers A.: Journal of Environmental Radioactivity 34 (1997) 161.CrossRefGoogle Scholar
  11. [11]
    Krajewski P. and Rosiak L.: Postępy Techniki Jądrowej 44 (2001) 38.Google Scholar
  12. [12]
    Zhu Y-G. and Smolders E. Journal of Experimental Botany 351 (2000) 1635.CrossRefGoogle Scholar
  13. [13]
    Wierzbicka M.: Environmental Pollution 104 (1999) 41.CrossRefGoogle Scholar
  14. [14]
    Wierzbicka M.: Plant Science 133 (1998) 105.CrossRefGoogle Scholar
  15. [15]
    Skarlou V., Nobeli C., Anoussis J., Haidouti C. and Papanicolaou E.: Journal of Environmental Radioactivity 45 (1999) 139.CrossRefGoogle Scholar
  16. [16]
    Hoagland D.R. and Broyer T.C.: American Journal of Botany 27 (1940) 173.CrossRefGoogle Scholar
  17. [17]
    Rodríguez-Navarro A.: Biochimica et Biophysica Acta, 1469 (2000) 1.Google Scholar
  18. [18]
    Smolders E., Kiebooms L., Buysse J. and Merckx R.: Plant and Soil 181 (1996) 205.CrossRefGoogle Scholar
  19. [19]
    Mocanu N. and Breban D. C.: Journal of Radioanalytical and Nuclear Chemistry 249 (2001) 633.CrossRefGoogle Scholar

Copyright information

© Institute of Physics, Acad. Sci. CR 2003

Authors and Affiliations

  • P. Ł. Urban
    • 1
  • G. Bystrzejewska-Piotrowska
    • 1
  1. 1.Isotopic Laboratory, Department of BiologyUniversity of WarsawWarsawPoland

Personalised recommendations