Advertisement

Czechoslovak Journal of Physics

, Volume 50, Supplement 1, pp 87–94 | Cite as

Low energy frontier: Physics with polarized cold neutrons

  • J. Sromicki
Part I New Experimental Results and Future Spin Physics Projects
  • 16 Downloads

Abstract

Recent developments in investigations of beta decay of the free neutron are discussed. Measurements of the neutron lifetime τ n and the electron emission asymmetry A n are a classic source of determination of the Standard Model parameters G v , G A and λ n . Combined with the results of the muon decay experiments, the nuclear superallowed 0→0 transitions and decays of particles containing heavy quarks, they provide tests of the SM assumptions: the unitarity of the CKM matrix, the number of the neutrino families, or the CVC hypothesis. In contrast, more complex correlations between the spins and the momenta of the emitted particles, (e.g. B n , D n , R n or G n ), are uniquely sensitive to the so called “Physics beyond the Standard Model”. Thus the question of the right handed bosons, the admixture of the scalar or tensor interaction, with or without time reversal violating terms, may be addressed separately in a dedicated, single experiment. Further development of powerful beams of polarized cold neutrons and sources of ultracold neutrons is imperative for progress in these studies.

Keywords

Electric Dipole Moment Beta Decay Cold Neutron Paul Scherrer Institute Ultracold Neutron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.P. Feynman, M. Gell-Mann, Phys. Rev. 109(1958)193.MATHCrossRefADSMathSciNetGoogle Scholar
  2. [2]
    J. Bjorken, S. Drell, Relativistic Quantum Mechanics, McGraw-Hill, 1964.Google Scholar
  3. [3]
    J.D. Jackson, S.B. Treiman, H.W. Wyld, Nucl. Phys. 4(1957)206.CrossRefGoogle Scholar
  4. [4]
    D.H. Wilkinson, Nucl. Phys. A377(1982)474.CrossRefADSGoogle Scholar
  5. [5]
    J. Byrne, et al., Phys. Rev. Lett. 65(1990)289.CrossRefADSGoogle Scholar
  6. [6]
    W. Mampe et al., Phys. Rev. Lett. 63(1989)593.CrossRefADSGoogle Scholar
  7. [7]
    V.V. Nesvizhevskii et al., JETP 75(1992)405.Google Scholar
  8. [8]
    W. Paul et al., Z. Phys. C45(1989)25.CrossRefGoogle Scholar
  9. [9]
    H. Abele et al., Phys. Lett. B407(1997)212.CrossRefADSGoogle Scholar
  10. [10]
    B.G. Erozolimskii et al., Phys. Lett. B263(1991)33.CrossRefADSGoogle Scholar
  11. [11]
    K. Schreckenbach et al., Phys. Lett. B349(1995)427.CrossRefADSGoogle Scholar
  12. [12]
    I.S. Towner, J.C. Hardy, in Physics Beyond the Standard Model, edited by P. Herczeg, World Scientific, 1999, p. 338.Google Scholar
  13. [13]
    Yu.V. Gaponov et al., Phys. Lett. B253(1991)283.CrossRefADSGoogle Scholar
  14. [14]
    A.S. Carnoy et al., J. Phys. G18(1992)823.CrossRefADSGoogle Scholar
  15. [15]
    I.A. Kuznetsov et al., Phys. Rev. Lett. 75(1995)794.CrossRefADSGoogle Scholar
  16. [16]
    J. Sromicki, in Physics Beyond the Standard Model, edited by P. Herczeg, World Scientific, 1999, p. 562.Google Scholar
  17. [17]
    W. Buchmüller et al., Phys. Lett. B191(1987)442.CrossRefADSGoogle Scholar
  18. [18]
    P. Herczeg, in Fundamental Symmetries in Nuclei and Particles, edited by H. Henrikson and P. Vogel, World Scientific, 1989, p. 46.Google Scholar
  19. [19]
    R.I. Steinberg et al., Phys. Rev. D13(1976)2469.CrossRefADSGoogle Scholar
  20. [20]
    B.G. Erozolimskii et al., JETP Lett. 20(1974)345.ADSGoogle Scholar
  21. [21]
    A.P. Serebrov et al., JETP 86(1998)1074.CrossRefADSGoogle Scholar
  22. [22]
    K. Schreckenbach et al., International Workshop on Particle Physics with Slow Neutrons, Oct. 1998, ILL Grenoble Nucl. Instr. Meth., in print.Google Scholar
  23. [23]
    A.P. Serebrov et al., International Workshop on Particle Physics with Slow Neutrons, Oct. 1998, ILL Grenoble, Nucl. Instr. Meth., in print.Google Scholar
  24. [24]
    J. Gordon et al., International Workshop on Particle Physics with Slow Neutrons, Oct. 1998, ILL Grenoble Nucl. Instr. Meth., in print.Google Scholar
  25. [25]
    J. Sromicki, et al., Phys. Rev. C53(1996)932.CrossRefADSGoogle Scholar
  26. [26]
    K. Bodek et al., PSI Scientific Report, 1998, vol. I, p. 5.Google Scholar
  27. [27]
    I.C. Barnett et al., PSI Proposal, R-96-04, June 1997.Google Scholar
  28. [28]
    J. Sromicki, International Workshop on Particle Physics with Slow Neutrons, Oct. 1998, ILL Grenoble, Nucl. Instr. Meth., in print.Google Scholar
  29. [29]
    I.S. Altarev et al., JETP 59(1996)1152.Google Scholar
  30. [30]
    P.G. Harris et al., Phys. Rev. Lett. 82(1999)904.CrossRefADSGoogle Scholar
  31. [31]
    A.P. Serebrov, et al., JETP Lett. 66(1997)802.CrossRefADSGoogle Scholar
  32. [32]
    J. Sromicki, Fist, UCN Factory Workshop, Pushkin, RU, Jan. 1998, p 80.Google Scholar
  33. [33]
    A.P. Serebrov et al., JETP Lett. 62(1995)785.ADSGoogle Scholar
  34. [34]
    A.P. Serebrov, Second UCN Factory Workshop, Pushkin, RU, June 1999, p 55.Google Scholar
  35. [35]
    D. Smith, Second UCN Factory Workshop, Pushkin, RU, June 1999, p 188.Google Scholar

Copyright information

© Institute of Phycics, Acad. Sci. CR 2000

Authors and Affiliations

  • J. Sromicki
    • 1
  1. 1.Institut für TeilchenphysikEidgenössische Technische Hochschule Zürich ETH HönggerbergZürichSwitzerland

Personalised recommendations