Language Resources and Evaluation

, Volume 47, Issue 2, pp 475–511 | Cite as

Is there a language of sentiment? An analysis of lexical resources for sentiment analysis

Original Paper


In recent years, sentiment analysis (SA) has emerged as a rapidly expanding field of application and research in the area of information retrieval. In order to facilitate the task of selecting lexical resources for automated SA systems, this paper sets out a detailed analysis of four widely used sentiment lexica. The analysis provides an overview of the coverage of each lexicon individually, the overlap and consistency of the four resources and a corpus analysis of the distribution of the resources’ lexical contents in general and specialised language. This work aims to explore the characteristics of affective language as represented by these lexica and the implications of the findings for developers of SA systems.


Sentiment analysis Electronic lexica Corpus analysis Financial information extraction 


  1. Ahmad, K., Cheng, D., & Almas, Y. (2006). Multilingual sentiment analysis in financial news streams. In S. Cozzini, S. d’Addona, & R. Mantegna (Eds.), Proceedings of the 1st international conference on grid in finance Italy: Palermo.Google Scholar
  2. Baccianella, S., Esuli, A., & Sebastiani, F. (2010). Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In Proceedings of LREC 2010.Google Scholar
  3. Blitzer, J., Dredze, M., & Pereira, F. (2007). Biographies, bollywood, boom-boxes, and blenders: Domain adaptation for sentiment classification. In Proceedings of ACL 2007.Google Scholar
  4. Bolasco, S., & Della Ratta-Rinaldi, F. (2004). Experiments on semantic categorization of texts: Analysis of positive and negative dimension. In Proceedings of the 7th international conference on the statistical analysis of textual data (JADT 2004).Google Scholar
  5. Boucher, J., & Osgood, C. E. (1969). The pollyanna hypothesis. Journal of Verbal Learning and Verbal Behavior 8(1), 1–8.CrossRefGoogle Scholar
  6. Choi, Y., & Cardie, C. (2009). Adapting a polarity lexicon using integer linear programming for domain-specific sentiment classification. In Proceedings of the 2009 conference on empirical methods in natural language processing (pp. 590–598). Singapore.Google Scholar
  7. Choi, Y., Kim, Y., & Myaeng, S.-H. (2009). Domain-specific sentiment analysis using contextual feature generation. In TSA ’09 Proceedings of the 1st international CIKM workshop on topic-sentiment analysis for mass opinion (pp. 37–44). New York: ACM .Google Scholar
  8. Devitt, A., & Ahmad, K. (2007). Cohesion-based sentiment polarity identification in financial news. In Proceedings of ACL 2007. Prague, Czech Republic.Google Scholar
  9. Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics 7(1), 1–26.CrossRefGoogle Scholar
  10. Ekman, P. (1994). Strong evidence for universals in facial expressions: A reply to russell’s mistaken critique. Psychological Bulletin 115(2), 268–287.CrossRefGoogle Scholar
  11. Ekman, P., & Friesen, W. V. (1971). Constants across cultures in the face and emotion. Journal of Personality and Social Psychology 17, 124–129.CrossRefGoogle Scholar
  12. Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. Journal of Finance 48(5), 1749–1778.CrossRefGoogle Scholar
  13. Esuli, A., & Sebastiani, F. (2006, May). Sentiwordnet: A publicly available lexical resource for opinion mining. In Proceedings of LREC 2006—5th conference on language resources and evaluation. Italy: Genova.Google Scholar
  14. Etcoff, N. L., & Magee, J. J. (1992). Categorical perception of facial expressions. Cognition 44, 227–240.CrossRefGoogle Scholar
  15. Fellbaum, C. (1998). WordNet,an electronic lexical database. Cambridge, MA: The MIT Press.Google Scholar
  16. Hatzivassiloglou, V., & McKeown, K. R. (1997). Predicting the semantic orientation of adjectives. In Proceedings of the 35th annual meeting of the ACL and the 8th conference of the European chapter of the ACL (pp. 174–181). New Brunswick, NJ.Google Scholar
  17. Hatzivassiloglou, V., & Wiebe, J. M. (2000). Effects of adjective orientation and gradability on sentence subjectivity. In Proceedings of the 18th international conference on computational linguistics. New Brunswick, NJ.Google Scholar
  18. Kanayama, H., Nasukawa, T., & Watanabe, H. (2004). Deeper sentiment analysis using machine translation technology. In Proceedings of the 20th international conference on computational linguistics. Geneva, Switzerland.Google Scholar
  19. Kennedy, A., & Inkpen, D. (2006). Sentiment classification of movie reviews using contextual valence shifters. Computational Intelligence 22(2), 110–125.CrossRefGoogle Scholar
  20. Kim, S.-M., & Hovy, E. (2004). Determining the sentiment of opinions. In Proceedings of COLING 2004. Geneva.Google Scholar
  21. Lasswell, H. D., & Kaplan, A. (1950). Power and society: A framework for political inquiry. New Haven: Yale University Press.Google Scholar
  22. Leech, G., Rayson, P., & Wilson, A. (2001). Word frequencies in written and spoken English. London: Longman.Google Scholar
  23. Martin, J. R., & White, P. R. R. (2005). Language of evaluation: appraisal in English. London: Palgrave Macmillan.Google Scholar
  24. Mihalcea, R., & Liu, H. (2006). A corpus-based approach to finding happiness. In Proceedings of AAAI spring symposium on computational approaches to weblogs. Menlo Park, CA: AAAI Press.Google Scholar
  25. Minnen, G., Carroll, J., & Pearce, D. (2001). Applied morphological processing of english. Natural Language Engineering, 7(3), 207–223.CrossRefGoogle Scholar
  26. Mitchell, M. L., & Mulherin, J. H. (1994). The impact of public information on the stock market. Journal of Finance, 49(3), 923–950.CrossRefGoogle Scholar
  27. Namenwirth, J. Z., & Weber, R. P. (1987). Dynamics of culture. Boston, MA: Allen and Unwin.Google Scholar
  28. Nasukawa, T., & Yi, J. (2003). Capturing favorability using natural language processing. In Proceedings of the 2nd international conference on knowledge capture (K-CAP 2003). Sanibel Island, Florida, USA, 23–25 October 2003.Google Scholar
  29. Niedenthal, P. M., & Halberstadt, J. B. (2000). Emotional response as conceptual coherence. In: E. Eich, J. F. Kihlstrom, G. H. Bower, J. P. Forgas, & P. M. Niedenthal (Eds.), Cognition and emotion, chapter 4 (pp. 169–203). Oxford: Oxford University Press.Google Scholar
  30. Ortony, A., Clore, G. L., & Foss, M/ A. (1987). The referential structure of the mental lexicon. Cognitive Science, 11(3), 341–364.CrossRefGoogle Scholar
  31. Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning. Chicago IL: University of Illinois Press.Google Scholar
  32. Pang, B., & Lee, L. (2004). A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proceedings of ACL 2004 (pp. 271–278). Barcelona, Spain: Association of Computational Linguistics.Google Scholar
  33. Pang, B., Lee, L., & Vaithyanathan, S. (2002) Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of EMNLP’02 (pp. 79–86).Google Scholar
  34. Polanyi, L., & Zaenen, A. (2004) Contextual valence shifters. In Proceedings of the AAAI symposium on exploring attitude and affect in text: Theories and applications.Google Scholar
  35. Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178.CrossRefGoogle Scholar
  36. Russell, J. A. (1994). Is there universal recognition of emotion from facial expression? A review of the cross-cultural studies. Psychological Bulletin, 115(1), 102–141.CrossRefGoogle Scholar
  37. Russell, J. A., & Mehabrian, A. (1977). Evidence of a three-factor theory of emotions. Journal of Research in Personality, 11, 273–294.CrossRefGoogle Scholar
  38. Stone, P. J., Dunphy, D. C., Smith, M. S., & Ogilvie, D. M. (1966). The general inquirer: A computer approach to content analysis. Cambridge: MIT Press.Google Scholar
  39. Strappavara, C., & Valitutti, A. (2004). Wordnet affect: An affective extension of wordnet. In Proceedings of LREC 2004. Portugal: Lisbon.Google Scholar
  40. Sweeney, K., & Whissell, C. (1984). A dictionary of affect in language: I. Establishment and preliminary validation. Perceptual and Motor Skills, 59(3), 695–698.Google Scholar
  41. Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. Journal of Finance, 62(3), 1139–1168.CrossRefGoogle Scholar
  42. Thorndike, E. L., & Lorge, I. (1944). The teacher’s word book of 30,000 words. New York: Teachers College, Columbia University.Google Scholar
  43. Turney, P. D. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In Proceedings of ACL’02 (pp. 417–424). Philadelphia, PA: Association for Computational Linguistics.Google Scholar
  44. Turney, P. D., & Littman, M. L. (2003). Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems, 21(4), 315–346.CrossRefGoogle Scholar
  45. Watson, D., & Tellegen, A. (1985). Toward a consensual structure of mood. Psychological Bulletin, 98(2), 219–235.CrossRefGoogle Scholar
  46. Whissell, C. (1989). The dictionary of affect in language. In R. Plutchik & H. Kellerman (Eds.), Emotion: Theory research and experience, volume 4, The measurement of emotions. London: Academic Press.Google Scholar
  47. Wiebe, J., Breck, E., Buckley, C., Cardie, C., Davis, P., Fraser, B., et al. (2003) Recognizing and organizing opinions expressed in the world press. In AAAI spring symposium on new directions in question answering. Stanford, CA, USA: Stanford University, AAAI Press.Google Scholar
  48. Wiebe, J., Wilson, T., Bruce, R., Bell, M., & Martin, M. (2004). Learning subjective language. Computational Linguistics, 30(3), 277–308.CrossRefGoogle Scholar
  49. Wiebe, J., Wilson, T., & Cardie, C. (2005). Annotating expressions of opinions and emotions in language. Language Resources and Evaluation, 39, 165–210.CrossRefGoogle Scholar
  50. Wilson, T., Wiebe, J., & Hoffmann, P. (2005, October). Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of human language technology conference and conference on empirical methods in natural language processing (HLT/EMNLP-2005) (pp. 347–354). Vancouver: Association for Computational Linguistics.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Trinity College DublinDublinIreland

Personalised recommendations