Language Resources and Evaluation

, Volume 42, Issue 3, pp 293–318 | Cite as

The Hamburg Metaphor Database project: issues in resource creation



This paper concerns metaphor resource creation. It provides an account of methods used, problems discovered, and insights gained at the Hamburg Metaphor Database project, intended to inform similar resource creation initiatives, as well as future metaphor processing algorithms. After introducing the project, the theoretical underpinnings that motivate the subdivision of represented information into a conceptual and a lexical level are laid out. The acquisition of metaphor attestations from electronic corpora is explained, and annotation practices as well as database contents are evaluated. The paper concludes with an overview of related projects and an outline of possible future work.


Agreement Annotation Conceptual information Evaluation Lexical information Mapping Metaphor Resource creation 









Hamburg Metaphor Database


Master Metaphor List


Mutual Information


Natural Language Processing



This work was supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD). Preliminary versions of this paper were discussed at the ROLAP meeting, Princeton University, 1 May 2007, and at the NTL meeting, International Computer Science Institute, Berkeley, 8 September 2007. Wolfgang Settekorn has supported the Hamburg Metaphor Database by periodically assigning student assistants to it. Carina Eilts and Astrid Reining annotated the largest part of the HMD entries. I am grateful to three anonymous reviewers for useful comments.


  1. Alonge, A. (2006). The Italian Metaphor Database. In Proceedings of the Fifth International Conference on Language Resources and Evaluation, LREC 2006 (pp. 455–460), Genoa, Italy: ELRA.Google Scholar
  2. Alonge, A., & Castelli, M. (2002). Which way should we go? Metaphoric expressions in lexical resources. In Proceedings of the Third Language Resources and Evaluation Conference (LREC’02) (Vol. VI, pp. 1948–1952), Las Palmas, Gran Canaria: ELRA.Google Scholar
  3. Barnden, J., Glasbey, S., Lee, M., & Wallington, A. (2002). Reasoning in metaphor understanding: The ATT-Meta approach and system. In Proceedings of the 19th International Conference on Computational Linguistics (COLING-2002) (pp. 1188–1192). San Francisco, CA: Morgan Kaufman.Google Scholar
  4. Barnden, J. A., & Lee, M. G. (2001). Understanding open-ended usages of familiar conceptual metaphors: an approach and artificial intelligence system. CSRP 01-05, School of Computer Science, University of Birmingham.Google Scholar
  5. Birke, J., & Sarkar, A. (2006). A clustering approach for the nearly unsupervised recognition of nonliteral language. In Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics (pp. 329–336), Trento, Italy: ACL.Google Scholar
  6. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.CrossRefGoogle Scholar
  7. Cruse, D. A. (1986). Lexical semantics. UK: Cambridge University Press.Google Scholar
  8. De Luca, E. W., & Lönneker-Rodman, B. (2008). Integrating metaphor information into RDF/OWL EuroWordNet. In Proceedings of the 6th International Conference on Language Resources and Evaluation (LREC-2008), Marrakech, Morocco.Google Scholar
  9. Degand, L., & Bestgen, Y. (2003). Towards automatic retrieval of idioms in French newspaper corpora. Literary and Linguistic Computing, 18(3), 249–259.CrossRefGoogle Scholar
  10. Di Eugenio, B., & Glass, M. (2004). The kappa statistic: A second look. Computational Linguistics, 30(1), 95–101.CrossRefGoogle Scholar
  11. Dobrovol’skij, D., & Piirainen, E. (2005). Figurative language: Cross-cultural and cross-linguistic perspectives. Elsevier.Google Scholar
  12. Fazly, A., & Stevenson, S. (2006). Automatically constructing a lexicon of verb phrase idiomatic combinations. In Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics (EACL-2006) (pp. 337–344). Trento, Italy: ACL.Google Scholar
  13. Feldman, J. (2006). From molecule to metaphor. Cambridge, MA: MIT Press.Google Scholar
  14. Fillmore, C. J., Johnson, C. R., & Petruck, M. R. L. (2003). Background to FrameNet. International Journal of Lexicography, 16(3), 235–250.CrossRefGoogle Scholar
  15. Gedigian, M., Bryant, J., Narayanan, S., & Ciric, B. (2006). Catching metaphors. In Proceedings of the 3rd Workshop on Scalable Natural Language Understanding (pp. 41–48), New York City.Google Scholar
  16. Glucksberg, S., & Keysar, B. (1990). Understanding metaphorical comparisons: Beyond similarity. Psychological Review, 97(1), 3–18.CrossRefGoogle Scholar
  17. Hobbs, J. R. (1992). Metaphor and abduction. In A. Ortony, J. Salck, & O. Stock (Eds.), Communication from an artificial intelligence perspective: Theoretical and applied issues (pp. 35–58). Berlin: Springer.Google Scholar
  18. Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation. In Machine Translation Summit X (pp. 79–86), Phuket, Thailand.Google Scholar
  19. Kövecses, Z. (2002). Metaphor: A practical introduction. New York: Oxford University Press.Google Scholar
  20. Krishnakumaran, S., & Zhu, X. (2007). Hunting elusive metaphors using lexical resources. In Proceedings of the Workshop on Computational Approaches to Figurative Language (pp. 13–20). Rochester, New York: ACL.Google Scholar
  21. Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: University of Chicago Press.Google Scholar
  22. Lakoff, G., Espenson, J., & Schwartz, A. (1991). Master metaphor list. Second draft copy. Technical report, Cognitive Linguistics Group, University of California Berkeley.
  23. Lee, M. (2006). Methodological issues in building a corpus of doctor-patient dialogues annotated for metaphor. In Cognitive-linguistic approaches: What can we gain by computational treatment of data? A Theme Session at DGKL-06/GCLA-06 (pp. 19–22). Munich, Germany.Google Scholar
  24. Lönneker, B. (2004). Lexical databases as resources for linguistic creativity: Focus on metaphor. In Proceedings of the LREC 2004 Satellite Workshop on Language Resources and Evaluation: Language Resources for Linguistic Creativity (pp. 9–16). Lisbon, Portugal: ELRA.Google Scholar
  25. Lönneker-Rodman, B., & Mohit, B. (2008). Translation of the non-literal: Evidence from an aligned corpus. In Abstract Proceedings of the Third International Conference of the German Cognitive Linguistics Association (GCLA-08), Leipzig, Germany.Google Scholar
  26. Markert, K., & Nissim, M. (2006). Metonymic proper names: A corpus-based account. In A. Stefanowitsch & S. T. Gries (Eds.), Corpus-based approaches to metaphor and metonymy (pp. 152–174). Berlin and New York: Mouton de Gruyter.Google Scholar
  27. Markert, K., & Nissim, M. (2007). SemEval-2007 Task 08: Metonymy Resolution at SemEval-2007. In Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval-2007) (pp. 36–41). Prague, Czech Republic: ACL.Google Scholar
  28. Martin, J. H. (1988). A computational theory of metaphor. Ph.D. thesis, University of California Berkeley.Google Scholar
  29. Martin, J. H. (1994). MetaBank: A knowledge-base of metaphoric language conventions. Computational Intelligence, 10(2), 134–149.CrossRefGoogle Scholar
  30. Mason, Z. J. (2004). CorMet: A computational, corpus-based conventional metaphor extraction system. Computational Linguistics, 30(1), 23–44.CrossRefGoogle Scholar
  31. Narayanan, S. (1999). Moving right along: A computational model of metaphoric reasoning about events. In Proceedings of the National Conference on Artificial Intelligence (AAAI ’99) (pp. 121–129). Orlando, Florida: AAAI Press.Google Scholar
  32. Nissim, M., & Markert, K. (2003). Syntactic features and word similarity for supervised metonymy resolution. In Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics (pp. 56–63). ACL.Google Scholar
  33. Ortony, A. (1979). Beyond literal similarity. Psychological Review, 86, 161–180.CrossRefGoogle Scholar
  34. Poesio, M., & Vieira, R. (1998). A corpus-based investigation of definite description use. Computational Linguistics, 24(2), 183–216.Google Scholar
  35. Pragglejaz Group (2007). MIP: A method for identifying metaphorically used words in discourse. Metaphor and Symbol, 22(1), 1–39.CrossRefGoogle Scholar
  36. Reddy, M. J. (1979). The conduit metaphor: A case of frame conflict in our language about language. In A. Ortony (Ed.), Metaphor and thought (pp. 284–324). Cambridge: Cambridge University Press.Google Scholar
  37. Reining, A. (2006). Corpusanalysetools und die Hamburger Metapherndatenbank. Eine computergestützte Analyse von Metaphern im Europadiskurs der französischen Tagespresse. Master’s thesis, Institute for Romance Languages, University of Hamburg, Hamburg, Germany.Google Scholar
  38. Reining, A., & Lönneker-Rodman, B. (2007). Corpus-driven metaphor harvesting. In Proceedings of the HLT/NAACL-07 Workshop on Computational Approaches to Figurative Language (pp. 5–12). Rochester, NY: ACL.Google Scholar
  39. Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In International Conference on New Methods in Language Processing, Manchester, UK.Google Scholar
  40. Simmank, A. (2008). Das französische Verfassungsreferendum vom 29. Mai 2005. Untersuchungen zum Metapherngebrauch in deutschen und französischen Printmedien. Master’s thesis, Institute for Romance Languages, University of Hamburg, Hamburg, Germany.Google Scholar
  41. Steen, G. J. (2007). Finding metaphor in discourse: Pragglejaz and beyond. Cultura, Lenguaje y Representación/Culture, Language and Representation (CLR), Revista de Estudios Culturales de la Universitat Jaume I, 5, 9–26.Google Scholar
  42. Sullivan, K. S. (2007). Grammar in metaphor: A construction grammar account of metaphoric language. Ph.D. thesis, University of California, Berkeley.Google Scholar
  43. Vossen, P. (1999). EuroWordNet General Document, Version 3. Technical report, University of Amsterdam.Google Scholar
  44. Wallington, A. M., Barnden, J. A., Buchlovsky, P., Fellows, L., & Glasbey, S. R. (2003). Metaphor annotation: A systematic study. CSRP 03-04, School of Computer Science, The University of Birmingham, Birmingham, U.K.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.International Computer Science InstituteBerkeleyUSA

Personalised recommendations