Advertisement

Computers and the Humanities

, Volume 38, Issue 4, pp 397–415 | Cite as

Experimenting with a Question Answering System for the Arabic Language

  • Bassam Hammo
  • Saleem Abuleil
  • Steven Lytinen
  • Martha Evens
Article

Abstract

The World Wide Web (WWW) today is so vast that it has become more and more difficult to find answers to questions using standard search engines. Current search engines can return ranked lists of documents, but they do not deliver direct answers to the user. The goal of Open Domain Question Answering (QA) systems is to take a natural language question, understand the meaning of the question, and present a short answer as a response based on a repository of information. In this paper we present QARAB, a QA system that combines techniques from Information Retrieval and Natural Language Processing. This combination enables domain independence. The system takes natural language questions expressed in the Arabic language and attempts to provide short answers in Arabic. To do so, it attempts to discover what the user wants by analyzing the question and a variety of candidate answers from a linguistic point of view.

Keywords

Arabic proper nouns Question-Answering semantic tagging shallow parsing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abuleil, S., Evens, M. 2002Extracting an Arabic Lexicon from Arabic Newspaper Text Computers and the Humanities36191221Google Scholar
  2. Abuleil S., Alsamara K., Evens M. (2002) Tagging Proper Nouns and Keywords to Classify Arabic Newspaper Text. Proceedings of the 13th Midwest Artificial Intelligence and Cognitive Science ConferenceChicago, IL, pp. 137–142.Google Scholar
  3. Abusalem, H., Al-Omari, M., Evens, M. 1999Stemming Methodologies over Individual Query Words for Arabic Information Retrieval. Journal of the American Society for Information Systems50524529Google Scholar
  4. Al-Kharashi, I., Evens, M. 1994Words, Stems and Roots in an Arabic Information Retrieval SystemJournal of the American Society for Information Science45548560Google Scholar
  5. Ask Jeeves. (1996). www.ask.com. Site last visited in March 2001Google Scholar
  6. Budzik J., Hammond K. (1999) Q&A: A System for the Capture, Organization and Reuse of Expertise. Proceedings of the ASIS Conference, Information Today, Inc.,Medford, NJ. Available on the Web at http://dent.infolab.nwu.edu/infolab/downloads/papers/paper10061.pdf . Site last visited in August 2001.Google Scholar
  7. Burke, R., Hammond, K., Kulyukin, V., Lytinen, S., Tomuro, N., Schoenberg, S. 1997Question Answering from Frequently-Asked Question Files: Experiences with the FAQ Finder SystemAI Magazine185766Google Scholar
  8. Chinchor N. (1997) Overview of MUC-7. Proceedings of the Seventh Message Understanding Conference, available on the Web at: http://www.itl.nist.gov/iaui/related_projects/ muc_7_toc.html.Site last visited in August 2001.Google Scholar
  9. Gaizauskas R., Humphreys K. (2000) A Combined IR/NLP Approach to Question Answering against Large Text Collections. Proceedings of RIAO 2000: Content-Based Multimedia Information AccessParis, France, April, pp. 1288 –1304.Google Scholar
  10. Grossman, D., Frieder, O., Holmes, D., Roberts, D. 1997Integrating Structured Data and Text: A Relational ApproachJournal of the American Society for Information Science (JASIS)48122132Google Scholar
  11. Hammo B., Abu-Salem H., Lytinen S., Abuleil S. (2002a) Identifying Proper Nouns for an Arabic Question Answering System. Proceedings of the 13th Midwest Artificial Intelligence and Cognitive Science Conference MAICS’02, Chicago, IL, pp. 130–136.Google Scholar
  12. Hammo B., Abu-Salem H., Lytinen S., Evens M. (2002b) QARAB: A Question Answering System to Support the Arabic Language. Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics: Workshop on Computational Approaches to Semitic Languages, ACL’02, Philadelphia, PA, pp. 55–65.Google Scholar
  13. Hermjakob, U. 2001Parsing and Question Classification for Question-Answering. Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics: Workshop on Open Domain Question AnsweringACL’01Toulouse, France, pp. 32–39Google Scholar
  14. Hovy, E., Hermjakob U., Lin CY (2001) The Use of External Knowledge in Factoid QA. Proceedings of the Tenth Text Retrieval Conference, TREC 10, pp. 644–652. Google Scholar
  15. Jacobs, P., Rau, L. 1990SCISOR: Extracting Information from On-line NewsCommunications of the ACM338897Google Scholar
  16. Katz B. (1997) From Sentence Processing to Information Access on the World Wide Web. Proceedings of the American Association for Artificial Intelligence Conference, Spring Symposium, NLP for WWW, pp. 77–86. Google Scholar
  17. Khoja, S., Garside, R. 1999Stemming Arabic Text. Computing DepartmentLancaster UniversityLancaster, UKhttp://www.comp.lancs.ac.uk/computing/users/khoja/stemmer.psGoogle Scholar
  18. Kupiec J. (1993) MURAX: A Robust Linguistic Approach for Question Answering Using an On-line Encyclopedia. Proceedings of the 16th Annual Int. ACM SIGIR Conference, pp. 181–190. Google Scholar
  19. Kupiec, J. 1999MURAX: Finding and Organizing Answers from Text Search. InStrzalkowski , T. eds. Natural Language Information RetrievalKluwer Academic PublishersThe Netherlands311331Google Scholar
  20. Larkey, L.S., Ballesteros, L., Connell, M.E. 2002Improving Stemming for Arabic Information Retrieval: Light Stemming and Co-occurrence AnalysisProceedings of the Twenty-fifth Annual SIGIR ConferenceTampereFinland275282Google Scholar
  21. Lehnert, W. 1978The Process of Question Answering. Lawrence ErlbaumHillsdaleNJGoogle Scholar
  22. Salton, G. 1971The SMART Retrieval System Experiments in Automatic Document Processing. Prentice Hall Inc.Englewood CliffsNJGoogle Scholar
  23. Schank, R., Abelson, R. 1977Scripts, Plans, Goals, and UnderstandingLawrence ErlbaumHillsdale, NJGoogle Scholar
  24. TREC-8 (1999) NIST Special Publication 500–246: The Eighth Text REtrieval Conference. Available on the Web at: http://trec.nist.gov/pubs/trec8/t8_proceedings.html. Site last visited in August 2001. Google Scholar
  25. TREC-9 (2000) NIST Special Publication: The Ninth Text REtrieval Conference. Available on the Web at: http://trec.nist.gov/pubs/trec9/t9_proceedings.html. Site last visited in August 2001.Google Scholar
  26. TREC-10 (2001) NIST Special Publication: The Tenth Text REtrieval Conference. Available on the Web at: http://trec.nist.gov/pubs/trec10/t10_proceedings.html. Site last visited in August 2002.Google Scholar
  27. Voorhees, E. 2001Overview of the TREC 2001 Question Answering Track. Proceedings of the 10th Text REtrieval Conference (TREC 2001)NIST Special Publication 500–250pp. 42–51Google Scholar
  28. Voorhees, E., Tice, D. 2000Building a Question Answering Test Collection. Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information RetrievalAthensGreece, pp. 200–207Google Scholar
  29. Winograd, T. 1972Understanding Natural Language. Academic PressNew YorkNYGoogle Scholar
  30. Woods W., Kaplan R., Webber B. (1972) The Lunar Sciences Natural Language. Information System: Final Report. Bolt Beranek and Newman Inc. (BBN), Report No. 2378, Cambridge, MA. Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Bassam Hammo
    • 1
  • Saleem Abuleil
    • 2
  • Steven Lytinen
    • 3
  • Martha Evens
    • 4
  1. 1.King Abdullah II School of Information TechnologyUniversity of JordanAmmanJordan
  2. 2.Department of Information SystemsChicago State UniversityChicagoUSA
  3. 3.CTIDepaul UniversityChicagoUSA
  4. 4.Computer ScienceIllinois Institute of TechnologyChicagoUSA

Personalised recommendations