Skip to main content
Log in

Nuclear localization signal region in nuclear receptor PXR governs the receptor association with mitotic chromatin

  • Original Article
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

In recent years, some transcription factors have been observed to remain associated with mitotic chromatin. Based on these observations, it is suggested that these chromatin-bound transcription factors may serve as ‘epigenetic marks’ for transmission of pattern of gene expression from progenitor to progeny cells. In this context, our laboratory has reported that nuclear receptor PXR, a master regulator of xenobiotic metabolism, remains constitutively associated with mitotic chromatin. However, the region responsible for this interaction with chromatin remained unknown. In this study, we have shown, for the first time, that mitotic chromatin association of this factor is mediated by the combined action of two zinc fingers present in the DNA-binding domain of PXR. Overall, the nuclear localization signal (NLS) region appears to play a major role in this interaction with mitotic chromatin. Also, we have identified a sub-region of 11 amino acid residues within NLS region of PXR (R66-76R) essential for receptor interaction with the mitotic chromatin. Interestingly, this minimal region is sequence-specific and independent of its basic charge. We have termed this minimal sub-region as ‘mitotic chromatin binding-determining region’ (MCBR). It is suggested that this receptor region is essential for activation of its target genes. Additionally, we have shown that PXR remains associated with the everted repeat (ER6) region of its major target gene, CYP3A4 promoter during mitosis implying its suggested role in ‘gene bookmarking’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AR:

Androgen receptor

BIOPIT:

Bimolecular imprints offered to progeny for inheritance of traits

Cdks:

Cyclin-dependent kinases

ChIP:

Chromatin immunoprecipitation

CTCF:

CCCTC-binding factor

DHT:

Dihydrotestosterone

ER6:

Everted repeat 6

ERα:

Estrogen receptor α

Esrrb:

Estrogen-related receptor beta

FACS:

Fluorescence-activated cell sorting

FLIM:

Fluorescence-lifetime imaging microscopy

FOX1:

Forkhead box 1

FRET:

Fluorescence resonance energy transfer

HMGA1a:

High-mobility group proteins A1

HMGB1:

High-mobility group box 1

HMGB2:

High-mobility group protein B2

hsp70:

70 kilodalton heat shock proteins

MCBR:

Mitotic chromatin binding-determining region

NLS:

Nuclear localization signal

PARP-1:

Poly (ADP-ribose) polymerase-1

PcG proteins:

Polycomb-group proteins

PXR:

Pregnane and xenobiotic receptor

RBPJ:

Recombining binding protein suppressor of hairless

Runx3:

Runt-related transcription factor 3

TBP:

TATA-box-binding protein

TFIID:

Transcription factor II D

TFIIH:

Transcription factor II Human

XREM:

Xenobiotic response element

References

  • Adams RR, Carmena M, Earnshaw WC (2001) Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol 11:49–54

    Article  CAS  PubMed  Google Scholar 

  • Akoulitchev S, Reinberg D (1998) The molecular mechanism of mitotic inhibition of TFIIH is mediated by phosphorylation of CDK7. Genes Dev 12:3541–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrack ER, Coffey DS (1980) The specific binding of estrogens and androgens to the nuclear matrix of sex hormone responsive tissues. J Biol Chem 255:7265–7275

    CAS  PubMed  Google Scholar 

  • Blumberg B, Sabbagh W, Juguilon H, Bolado J, van Meter CM, Ong ES, Evans RM (1998) SXR, a novel steroid and xenobiotic sensing nuclear receptor. Genes Dev 12:3195–3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke LJ, Zhang R, Bartkuhn M, Tiwari VK, Tavoosidana G, Kurukuti S, Weth C, Leers J, Galjart N, Ohlsson R, Renkawitz R (2005) CTCF binding and higher order chromatin structure of the H19 locus are maintained in mitotic chromatin. EMBO J 24:3291–3300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caravaca JM, Donahue G, Becker JS, He X, Vinson C, Zaret KS (2013) Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to mitotic chromosomes. Genes Dev 27:251–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S, Jiao X, Hu JP, Chen Y, Tian XH (2010) Stability and folding behaviour analysis of zinc-finger using simple models. Int. J. Mol. Sci 11:4014–4034

  • Chaturvedi NK, Kumar S, Negi S, Tyagi RK (2010) Endocrine disruptors provoke differential modulatory responses on androgen receptor and pregnane and xenobiotic receptor: potential implications in metabolic disorders. Mol Cell Biochem 345:291–308

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Hinkley CS, Henry RW, Huang S (2002) TBP dynamics in living human cells: constitutive association of TBP with mitotic chromosomes. Mol Biol Cell 13:276–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Dundr M, Wang C, Leung A, Lamond A, Misteli T, Huang S (2005) Condensed mitotic chromatin is accessible to transcription factors and chromatin structural proteins. J Cell Biol 168:41–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Tang Y, Wang MT, Zeng S, Nie D (2007) Human pregnane X receptor and resistance to chemotherapy in prostate cancer. Cancer Res 67:10361–10367

    Article  CAS  PubMed  Google Scholar 

  • Christova R, Oelgeschläger T (2002) Association of human TFIID promoter complexes with silenced mitotic chromatin in vivo. Nat Cell Biol 4:79–82

    Article  CAS  PubMed  Google Scholar 

  • Claessens F, Gewirth DT (2004) DNA recognition by nuclear receptors. Essays Biochem 40:59–72

    Article  CAS  PubMed  Google Scholar 

  • Cutress ML, Whitaker HC, Mills IG, Stewart M, Neal DE (2008) Structural basis for the nuclear import of the human androgen receptor. J Cell Sci 121:957–968

    Article  CAS  PubMed  Google Scholar 

  • Das C, Hizume K, Batta K, Kumar BR, Gadad SS, Ganguly S, Lorain S, Verreault A, Sadhale PP, Takeyasu K, Kundu TK (2006) Transcriptional coactivator PC4, a chromatin-associated protein, induces chromatin condensation. Mol Cell Biol 26:8303–8315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dash AK, Yende AS, Tyagi RK (2017a) Novel application of red fluorescent protein (DsRed-Express) for the study of functional dynamics of nuclear receptors. J Fluoresc 27:1225–1231

    Article  CAS  PubMed  Google Scholar 

  • Dash AK, Yende AS, Jaiswal B, Tyagi RK (2017b) Heterodimerization of retinoid X receptor with xenobiotic receptor partners occurs in the cytoplasmic compartment: mechanistic insights of events in living cells. Exp Cell Res 360:337–346

    Article  CAS  PubMed  Google Scholar 

  • Drouin J (2014) Minireview: pioneer transcription factors in cell fate specification. Mol Endocrinol 28:989–998

    Article  PubMed  PubMed Central  Google Scholar 

  • Egli D, Birkhoff G, Eggan K (2008) Mediators of reprogramming: transcription factors and transitions through mitosis. Nat Rev Mol Cell Biol 9:505–516

    Article  CAS  PubMed  Google Scholar 

  • Festuccia N, Dubois A, Vandormael-Pournin S, Tejeda EG, Mouren A, Bessonnard S, Mueller F, Proux C, Cohen-Tannoudji M, Navarro P (2016) Mitotic binding of Esrrb marks key regulatory regions of the pluripotency network. Nat Cell Biol 18:1139–1148

    Article  CAS  PubMed  Google Scholar 

  • Follmer NE, Wani AH, Francis NJA (2012) Polycomb group protein is retained at specific sites on chromatin in mitosis. PLoS Genet 8:e1003135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottesfeld JM, Forbes DJ (1997) Mitotic repression of the transcriptional machinery. Trends Biochem Sci 22:197–202

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Lee KH (2008) Silent mutations result in HlyA hypersecretion by reducing intracellular HlyA protein aggregates. Biotechnol Bioeng 101:967–974

    Article  CAS  PubMed  Google Scholar 

  • Hagstrom KA, Meyer BJ (2003) Condensin and cohesin: more than chromosome compactor and glue. Nat Rev Genet 4:520–534

    Article  CAS  PubMed  Google Scholar 

  • Harrer M, Luhrs H, Bustin M, Scheer U, Hock R (2004) Dynamic interaction of HMGA1a proteins with chromatin. J. Cell Sci 117:3459–3471

    Article  CAS  Google Scholar 

  • Heix J, Vente A, Voit R, Budde A, Michaelidis TM, Grummt I (1998) Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. EMBO J 17:7373–7381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiung CC, Morrissey CS, Udugama M, Frank CL, Keller CA, Baek S, Giardine B, Crawford GE, Sung MH, Hardison RC, Blobel GA (2015) Genome accessibility is widely preserved and locally modulated during mitosis. Genome Res 25:213–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadauke S, Blobel GA (2013) Mitotic bookmarking by transcription factors. Epigenetics Chromatin 6:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawana K, Ikuta T, Kobayashi Y, Gotoh O, Takeda K, Kawajiri K (2003) Molecular mechanism of nuclear translocation of an orphan nuclear receptor, SXR. Mol Pharmacol 63:524–531

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tyagi RK (2012) Androgen receptor association with mitotic chromatin—analysis with introduced deletions and disease-inflicting mutations. FEBS J 279:4598–4614

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Chaturvedi NK, Kumar S, Tyagi RK (2008) Agonist-mediated docking of androgen receptor onto the mitotic chromatin platform discriminates intrinsic mode of action of prostate cancer drugs. Biochim Biophys Acta 1783:59–73

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Saradhi M, Chaturvedi NK, Tyagi RK (2012) Retention and transmission of active transcription memory from progenitor to progeny cells via ligand-modulated transcription factors: elucidation of a concept by BIOPIT model. Cell Biol Int 36:177–182

    Article  CAS  PubMed  Google Scholar 

  • LaCasse EC, Lefebvre YA (1995) Nuclear localization signals overlap DNA- or RNA-binding domains in nucleic acid-binding proteins. Nucleic Acids Res 23:1647–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lake RJ, Tsai PF, Choi I, Won KJ, Fan HY (2014) RBPJ, the major transcriptional effector of notch signaling, remains associated with chromatin throughout mitosis, suggesting a role in mitotic bookmarking. PLoS Genet 10:e1004204

    Article  PubMed  PubMed Central  Google Scholar 

  • Laskey RA, Dingwall C (1993) Nuclear shuttling: the default pathway for nuclear proteins. Cell 74:585–586

    Article  CAS  PubMed  Google Scholar 

  • Li G, Sudlow G, Belmont AS (1998) Interphase cell cycle dynamics of a late-replicating, heterochromatic homogeneously staining region: precise choreography of condensation/decondensation and nuclear positioning. J. Cell Biol 140:975–989

    Article  CAS  Google Scholar 

  • Lleres D, James J, Swift S, Norman DG, Lamond AI (2009) Quantitative analysis of chromatin compaction in living cells using FLIM-FRET. J Cell Biol 187:481–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodhi N, Kossenkov AV, Tulin AV (2014) Bookmarking promoters in mitotic chromatin: poly (ADP-ribose) polymerase-1 as an epigenetic mark. Nucl. Acids Res 42:7028–7038

    Article  CAS  Google Scholar 

  • Martin RM, Cardoso MC (2010) Chromatin condensation modulates access and binding of nuclear proteins. FASEB J 24:1066–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Balbás MA, Dey A, Rabindran SK, Ozato K, Wu C (1995) Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83:29–38

    Article  PubMed  Google Scholar 

  • Mizuno K, Katoh M, Okumura H, Nakagawa N, Negishi T, Hashizume T, Nakajima M, Yokoi T (2009) Metabolic activation of benzodiazepines by CYP3A4. Drug Metab Dispos 37:345–351

    Article  CAS  PubMed  Google Scholar 

  • Pallier C, Scaffidi P, Chopineau-Proust S, Agresti A, Nordmann P, Bianchi ME, Marechal V (2003) Association of chromatin proteins high mobility group box (HMGB) 1 and HMGB 2 with mitotic chromosomes. Mol Biol Cell 14:3414–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palozola KC, Donahue G, Liu H, Grant GR, Becker JS, Cote A, Yu H, Raj A, Zaret KS (2017) Mitotic transcription and waves of gene reactivation during mitotic exit. Science 358:119–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pockwinse SM, Kota KP, Quaresma AJC, Imbalzano AN, Lian JB, van Wijnen AJ, Stein JL, Stein GS, Nickerson JA (2011) Live cell imaging of the cancer related transcription factor RUNX2 during mitotic progression. J Cell Physiol 226:1383–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pondugula SR, Brimer-Cline C, Wu J, Schuetz EG, Tyagi RK, Chen T (2009) A phosphomimetic mutation at threonine-57 abolishes transactivation activity and alters nuclear localization pattern of human pregnane x receptor. Drug Metab Dispos 37:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raccaud M, Suter DM (2018) Transcription factor retention on mitotic chromosomes: regulatory mechanisms and impact on cell fate decisions. FEBS Lett 592:878–887. https://doi.org/10.1002/1873-3468.12828

    Article  CAS  PubMed  Google Scholar 

  • Rada-Iglesias A (2013) Pioneering barren land: mitotic bookmarking by transcription factors. Dev Cell 24:342–344

    Article  CAS  PubMed  Google Scholar 

  • Rana M, Devi S, Gourinath S, Goswami R, Tyagi RK (2016) A comprehensive analysis and functional characterization of naturally occurring non-synonymous variants of nuclear receptor PXR. Biochim Biophys Acta 1859:1183–1197

    Article  CAS  PubMed  Google Scholar 

  • Saradhi M, Sengupta A, Mukhopadhyay G, Tyagi RK (2005) Pregnane and xenobiotic receptor (PXR/SXR) resides predominantly in the nuclear compartment of the interphase cell and associates with the condensed chromosomes during mitosis. Biochim Biophys Acta 1746:85–94

    Article  CAS  PubMed  Google Scholar 

  • Saradhi M, Kumar N, Reddy RC, Tyagi RK (2006) Pregnane and xenobiotic receptor (PXR): a promiscous xenosensor in human health and disease. J Endocrinol Reprod 10:1–12

    Google Scholar 

  • Schmidt-Zachmann MS, Dargemont C, Kühn LC, Nigg EA (1993) Nuclear export of proteins: the role of nuclear retention. Cell 74:493–504

    Article  CAS  PubMed  Google Scholar 

  • Sciortino S, Gurtner A, Manni I, Fontemaggi G, Dey A, Sacchi A, Ozato K, Piaggio G (2001) The cyclin B1 gene is actively transcribed during mitosis in HeLa cells. EMBO Rep 2:1018–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sif S, Stukenberg PT, Kirschner MW, Kingston RE (1998) Mitotic inactivation of a human SWI/SNF chromatin remodeling complex. Genes Dev 12:2842–2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirri V, Roussel P, Hernandez-Verdun D (1999) The mitotically phosphorylated form of the transcription termination factor TTF-1 is associated with the repressed rDNA transcription machinery. J. Cell Sci 112:3259–3268

    CAS  Google Scholar 

  • Spelsberg TC, Gosse BJ, Littlefield BA, Toyoda H, Seelke R (1984) Reconstitution of native like nuclear acceptor sites of the avian oviduct progesterone receptor: evidence for involvement of specific chromatin proteins and specific DNA sequences. Biochemistry 23:5103–5113

    Article  CAS  PubMed  Google Scholar 

  • Spencer CA, Kruhlak MJ, Jenkins HL, Sun X, Bazett-Jones DP (2000) Mitotic transcription repression in vivo in the absence of nucleosomal chromatin condensation. J Cell Biol 150:13–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spit A, Hyland RH, Mellor EJC, Casselton LA (1998) A role for heterodimerization in nuclear localization of a homeodomain protein. Proc Natl Acad Sci U S A 95:6228–6233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhakar DR, Kalaiarasan P, Subbarao N (2016) Docking and molecular dynamics simulation study of EGFR1 with EGF-like peptides to understand molecular interactions. Mol BioSyst 12:1987–1995

    Article  CAS  PubMed  Google Scholar 

  • Takeyama D, Miki Y, Fujishima F, Suzuki T, Akahira J, Hata S, Miyata G, Satomi S, Sasano H (2010) Steroid and xenobiotic receptor in human esophageal squamous cell carcinoma: a potent prognostic factor. Cancer Sci 101:543–549

    Article  CAS  PubMed  Google Scholar 

  • Verdeguer F, Corre S, Fischer E, Callens C, Garbay S, Doyen A, Igarashi P, Terzi F, Pontoglio M (2010) A mitotic transcriptional switch in polycystic kidney disease. Nat Med 16:106–110

    Article  CAS  PubMed  Google Scholar 

  • Woodcock CL, Ghosh RP (2010) Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol 2:a000596

    Article  PubMed  PubMed Central  Google Scholar 

  • Xing H, Wilkerson DC, Mayhew CN, Lubert EJ, Skaggs HS, Goodson ML, Hong Y, Park-Sarge OK, Sarge KD (2005) Mechanism of hsp70i gene bookmarking. Science 307:421–423

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Xu L, Crawford G, Wang Z, Burgess SM (2006) The Forkhead transcription factor FoxI1 remains bound to condensed mitotic chromosomes and stably remodels chromatin structure. Mol Cell Biol 26:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young DW, Hassan MQ, Yang XQ, Galindo M, Javed A, Zaidi SK, Furcinitti P, Lapointe D, Montecino M, Lian JB, Stein JL, van Wijnen AJ, Stein GS (2007) Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2. Proc Natl Acad Sci U S A 104:3189–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaret KS (2014) Genome reactivation after the silence in mitosis: recapitulating mechanisms of development? Dev Cell 29:132–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Amulya K. Panda, Director, and Dr. Vikash Kumar, Scientist at the National Institute of Immunology, New Delhi, for help with the cell cycle analysis and sorting of mitotic cells.

Funding

The research work presented in this paper was financially supported by a research grant to RKT from the UPE-II (University with Potential for Excellence phase II)- project ID 25 and UGC (University Grants Commission)- major project - F.No. 41-1294/2012(SR), Central financial support to our Centre by UGC-SAP (University Grants Commission-Special Assistance Programme) - F.No. 3-17/2015/DRS II (SAP-II), ICMR-CAR (Indian Council of Medical Research-Centre for Advanced Research) - F.No. 63/9/2010-BMS, DST-PURSE (Department of Science & Technology-Promotion of University Research and Scientific Excellence) - PAC-JNU-DST-PURSE-462 (Phase-II) is gratefully acknowledged. MR, AKD, and KP acknowledge UGC-BSR (University Grants Commission - Basic Scientific Research), DST-INSPIRE (Department of Science & Technology- Innovation in Science Pursuit for Inspired Research) and DST-SERB (Department of Science & Technology-Science and Engineering Research Board) respectively for the grant of doctoral research fellowships (MR and AKD) and post-doctoral research fellowship (KP).

Author information

Authors and Affiliations

Authors

Contributions

RKT conceived, designed, and supervised the project. MR and AKD designed and performed most of the experiments. RKT, MR, and AKD analyzed the data and wrote the paper. KP did the in silico experiments.

Corresponding author

Correspondence to Rakesh K. Tyagi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible Editor: Dean A. Jackson

Electronic supplementary material

ESM 1

(DOC 11140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, M., Dash, A.K., Ponnusamy, K. et al. Nuclear localization signal region in nuclear receptor PXR governs the receptor association with mitotic chromatin. Chromosome Res 26, 255–276 (2018). https://doi.org/10.1007/s10577-018-9583-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-018-9583-2

Keywords

Navigation