Skip to main content

Advertisement

Log in

Dependence of the structure and mechanics of metaphase chromosomes on oxidized cysteines

  • Original Article
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

We have found that reagents that reduce oxidized cysteines lead to destabilization of metaphase chromosome folding, suggesting that chemically linked cysteine residues may play a structural role in mitotic chromosome organization, in accord with classical studies by Dounce et al. (J Theor Biol 42:275–285, 1973) and Sumner (J Cell Sci 70:177–188, 1984a). Human chromosomes isolated into buffer unfold when exposed to dithiothreitol (DTT) or tris(2-carboxyethyl)phosphine (TCEP). In micromanipulation experiments which allow us to examine the mechanics of individual metaphase chromosomes, we have found that the gel-like elastic stiffness of native metaphase chromosomes is dramatically suppressed by DTT and TCEP, even before the chromosomes become appreciably unfolded. We also report protein labeling experiments on human metaphase chromosomes which allow us to tag oxidized and reduction-sensitive cysteine residues. PAGE analysis using fluorescent labels shows a small number of labeled bands. Mass spectrometry analysis of similarly labeled proteins provides a list of candidates for proteins with oxidized cysteines involved in chromosome organization, notably including components of condensin I, cohesin, the nucleosome-interacting proteins RCC1 and RCC2, as well as the RNA/DNA-binding protein NONO/p54NRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAP:

Chromosome-associated protein

DAPI:

2-(4-Amidinophenyl)-1H-indole-6-carboxamidine

DTT:

Dithiothreitol

FBS:

Fetal bovine serum

HEK:

Human embryonic kidney (cell)

HSA:

Human serum albumin

NEM:

N-ethyl maleimide

PBS:

Phosphate-buffered saline

PAGE:

Polyacrylamide gel electrophoresis

pN:

Piconewton (10−12 N)

RCC:

Regulator of chromosome condensation

SDS:

Sodium dodecyl sulfate

SMC:

Structural maintenance of chromosome (complex)

TCEP:

Tris(2-carboxyethyl)phosphine

References

  • Brinkley M (1992) A brief survey of methods for preparing protein conjugates with dyes, haptens, and cross-linking reagents. Bioconjug Chem 3:2–13

    Article  CAS  PubMed  Google Scholar 

  • Bulleid NJ, Ellgaard L (2011) Multiple ways to make disulfides. Trends Biochem Sci 36:485–492

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M, Paschal BM (2015) Disruption of the ran system by cysteine oxidation of the nucleotide exchange factor RCC1. Mol Cell Biol 35:566–581

    Article  PubMed  Google Scholar 

  • Dounce AL, Chanda SK, Townes PL (1973) The structure of higher eukaryotic chromosomes. J Theor Biol 42:275–285

    Article  CAS  PubMed  Google Scholar 

  • Goswami PC, Sheren J, Albee LD et al (2000) Cell cycle-coupled variation in topoisomerase IIalpha mRNA is regulated by the 3’-untranslated region. Possible role of redox-sensitive protein binding in mRNA accumulation. J Biol Chem 275:38384–38392

    Article  CAS  PubMed  Google Scholar 

  • Hermanson GT (1996) Bioconjugate techniques. Academic, New York

    Google Scholar 

  • Hirano T, Mitchison TJ (1994) A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79:449–458

    Article  CAS  PubMed  Google Scholar 

  • Hornick JE, Duncan FE, Sun M, Kawamura R, Marko JF, Woodruff TK (2015) Age-associated alterations in the micromechanical properties of chromosomes in the mammalian egg. J Assist Reprod Genet 32:765–769

    Article  PubMed  PubMed Central  Google Scholar 

  • Hudson DA, Gannon SA, Thorpe C (2015) Oxidative protein folding: from thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum. Free Radic Biol Med 80:171–182

    Article  CAS  PubMed  Google Scholar 

  • Hwang NR, Yim SH, Kim YM et al (2009) Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Biochem J 423:253–264

    Article  CAS  PubMed  Google Scholar 

  • Jeppesen P, Morten H (1985) Effects of sulphydryl reagents on the structure of dehistonized metaphase chromosomes. J Cell Sci 73:245–260

    CAS  PubMed  Google Scholar 

  • Kawamura N, Dan K (1958) A cytochemical study of the sulfhydryl groups of sea urchin eggs during the first cleavage. J Biophys Biochem Cytol 4:615–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura R, Pope LH, Christensen MO et al (2010) Mitotic chromosomes are constrained by topoisomerase II-sensitive DNA entanglements. J Cell Biol 188:653–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuga T, Nakayama Y, Iwamatsu A, Fukumoto Y, Yokomori K, Yamaguchi N (2007) Separation of a disulfide-linked phosphoprotein by diagonal SDS-PAGE with optimized gel crosslinking. Anal Biochem 370:252–254

    Article  CAS  PubMed  Google Scholar 

  • Lewis CD, Laemmli UK (1982) Higher order metaphase chromosome structure: evidence for metalloprotein interactions. Cell 29:171–181

    Article  CAS  PubMed  Google Scholar 

  • Maeshima K, Laemmli UK (2003) A two-step scaffolding model for mitotic chromosome assembly. Dev Cell 4:467–480

    Article  CAS  PubMed  Google Scholar 

  • Makde RD, England JR, Yennawar HP, Tan S (2010) Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467:562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marko JF (2008) Micromechanical studies of mitotic chromosomes. Chromosom Res 16:469–497

    Article  CAS  Google Scholar 

  • Meikrantz W, Suprynowicz FA, Halleck MS, Schlegel RA (1990) Identification of mitosis-specific p65 dimer as a component of human M phase-promoting factor. Proc Natl Acad Sci U S A 87:9600–9604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menon SG, Goswami PC (2007) A redox cycle within the cell cycle: ring in the old with the new. Oncogene 26:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Menon SG, Sarsour EH, Spitz DR et al (2003) Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle. Cancer Res 63:2109–2117

    CAS  PubMed  Google Scholar 

  • Nicklas RB (1963) A quantitative study of chromosomal elasticity and its influence on chromosome movement. Chromosoma 14:276–295

    Article  CAS  PubMed  Google Scholar 

  • Nicklas RB (1983) Measurements of the force produced by the mitotic spindle in anaphase. J Cell Biol 97:542–548

    Article  CAS  PubMed  Google Scholar 

  • Ohta S, Bukowski-Wills JC, Sanchez-Pulido L et al (2010) The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142:810–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olszewska MJ, Marciniak K, Kuran H (1990) The timing of synthesis of proteins required for mitotic spindle and phragmoplast in partially synchronized root meristems of Vicia faba L. Eur J Cell Biol 53:89–92

    CAS  PubMed  Google Scholar 

  • Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121

    Article  CAS  PubMed  Google Scholar 

  • Patil NA, Tailhades J, Hughes RA, Separovic F, Wade JD, Hossain MA (2015) Cellular disulfide bond formation in bioactive peptides and proteins. Int J Mol Sci 16:1791–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirier MG, Marko JF (2002) Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proc Natl Acad Sci U S A 99:15393–15397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirier M, Eroglu S, Chatenay D, Marko JF (2000) Reversible and irreversible unfolding of mitotic newt chromosomes by applied force. Mol Biol Cell 11:269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pope LH, Xiong C, Marko JF (2006) Proteolysis of mitotic chromosomes induces gradual and anisotropic decondensation correlated with a reduction of elastic modulus and structural sensitivity to rarely cutting restriction enzymes. Mol Biol Cell 17:104–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapkine L (1931) Su les processus chimiques au cours de la division cellulaire. Ann Physiol Physiochem Biol 7:382–418

    CAS  Google Scholar 

  • Samejima K, Samejima I, Vagnarelli P et al (2012) Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα. J Cell Biol 199:755–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, Goswami PC (2009) Redox control of the cell cycle in health and disease. Antioxid Redox Signal 11:2985–3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarsour EH, Kalen AL, Goswami PC (2014) Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxid Redox Signal 20:1618–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevier CS, Kaiser CA (2002) Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 3:836–847

    Article  CAS  PubMed  Google Scholar 

  • Shintomi K, Takahashi TS, Hirano T (2015) Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat Cell Biol 17:1014–1023

    Article  CAS  PubMed  Google Scholar 

  • Sone T, Iwano M, Kobayashi S et al (2002) Changes in chromosomal surface structure by different isolation conditions. Arch Histol Cytol 65:445–455

    Article  PubMed  Google Scholar 

  • Struchkov VA, Strazhevskaia NB (1989) Specific disulfide links of the DNA residual protein complex. Dokl Akad Nauk SSSR 307:755–758

    CAS  PubMed  Google Scholar 

  • Struchkov VA, Strazhevskaya NB (1994) Significance of specific protein S-S bonds in the structural-functional organization of DNA. Bull Exp Biol Med 118:875–878

    Article  Google Scholar 

  • Struchkov VA, Strazhevskaya NB, Blokhin DY (1992) Thiol-Induced fragmentation of chromosomal DNA. Bull Exp Biol Med 113:716–719

    Google Scholar 

  • Struchkov VA, Strazhevskaya NB, Blokhin DY (1995) Role of the disulfide bridges of the residual protein in the structure of chromosomal DNA. Biofizika 40:296–316

    CAS  PubMed  Google Scholar 

  • Sumner AT (1984a) Distribution of protein sulphydryls and disulphides in fixed mammalian chromosomes, and their relationship to banding. J Cell Sci 70:177–188

    CAS  PubMed  Google Scholar 

  • Sumner AT (1984b) X-ray microanalysis of protein sulfhydryl-groups in chromatin. Scan Electron Microsc, PT 2:897–904

    Google Scholar 

  • Sun M, Kawamura R, Marko JF (2011) Micromechanics of human mitotic chromosomes. Phys Biol 8:015003

    Article  PubMed  PubMed Central  Google Scholar 

  • Takata H, Uchiyama S, Nakamura N et al (2007) A comparative proteome analysis of human metaphase chromosomes isolated from two different cell lines reveals a set of conserved chromosome-associated proteins. Genes Cells 12:269–284

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama S, Kobayashi S, Takata H et al (2005) Proteome analysis of human metaphase chromosomes. J Biol Chem 280:16994–17004

    Article  CAS  PubMed  Google Scholar 

  • Vagnarelli P, Hudson DF, Ribeiro SA et al (2006) Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis. Nat Cell Biol 8:1133–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Carroll KS, Liebler DC (2016) The expanding landscape of the thiol redox proteome. Mol Cell Proteomics 15:1–11

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF through grants MCB-1022117 and DMR-1206868 and by the NIH through grants R01-GM105847 and U54-CA193419 and by subcontract to U54-DK107980. Work at the Northwestern Proteomics Core was supported in part by the Northwestern Office of Research and the Feinberg School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Marko.

Ethics declarations

Ethical standards

The experiments described in this article comply with the current laws of the country where they were performed (USA). This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible Editor: Tatsuo Fukagawa, Ph.D

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 620 kb)

ESM 2

(XLSX 31 kb)

ESM 3

(XLSX 23 kb)

ESM 4

(XLSB 2347 kb)

ESM 5

(XLSX 51 kb)

ESM 6

(XLSX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eastland, A., Hornick, J., Kawamura, R. et al. Dependence of the structure and mechanics of metaphase chromosomes on oxidized cysteines. Chromosome Res 24, 339–353 (2016). https://doi.org/10.1007/s10577-016-9528-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-016-9528-6

Keywords

Navigation