Advertisement

Chromosome Research

, Volume 23, Issue 1, pp 77–85 | Cite as

Engineered minichromosomes in plants

  • James A. Birchler
Review

Abstract

Engineered minichromosomes have been produced in several plant species via telomere-mediated chromosomal truncation. This approach bypasses the complications of the epigenetic nature of centromere function in plants, which has to date precluded the production of minichromosomes by the re-introduction of centromere sequences to a plant cell. Genes to be added to a cleaved chromosome are joined together with telomere repeats on one side. When these constructs are introduced into plant cells, the genes are ligated to the broken chromosomes but the telomere repeats will catalyze the formation of a telomere on the other end cutting the chromosome at that point. Telomere-mediated chromosomal truncation is sufficiently efficient that very small chromosomes can be generated consisting of basically the endogenous centromere and the added transgenes. The added transgenes provide a platform onto which it should be possible to assemble a synthetic chromosome to specification. Combining engineered minichromosomes with doubled haploid breeding should greatly expedite the transfer of transgenes to new lines and to test the interaction of transgenes in new background genotypes. Potential basic and applied applications of synthetic chromosomes are discussed.

Keywords

Artificial chromosomes Synthetic biology B chromosomes Telomeres Genome editing Genetic engineering Centromeres Epigenetics Gene stacking 

Abbreviations

CENH3

Variant of histone H3 present at active centromeres

CRM2

Centromeric retrotransposon maize 2

BiBAC

Binary bacterial artificial chromosome vector for plant transformation

Notes

Acknowledgments

Research on this topic in the author’s laboratory is supported by grant IOS-1339198 from the National Science Foundation.

References

  1. Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659CrossRefPubMedGoogle Scholar
  2. Birchler JA, Han F (2009) Maize centromeres: structure, function, epigenetics. Annu Rev Genet 43:287–303CrossRefPubMedGoogle Scholar
  3. Birchler JA, Presting GG (2012) Retrotransposon insertion targeting: a mechanism for homogenization of centromere sequences on nonhomologous chromosomes. Genes Dev 26:638–640CrossRefPubMedCentralPubMedGoogle Scholar
  4. Birchler JA, Veitia RA (2012) Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci U S A 109:14746–14753CrossRefPubMedCentralPubMedGoogle Scholar
  5. Carlson WR (1986) The B chromosome of maize. CRC Crit Rev Plant Sci 3:201–226CrossRefGoogle Scholar
  6. Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93:381–382CrossRefGoogle Scholar
  7. Deimling S, Rober FK, Geiger HH (1997) Methodik und genetic der in-vivo-haploid eninducktionbeimais. Vortr PX Anzensuchtg 38:203–224Google Scholar
  8. Farr CJ, Stevanovic M, Thomson EJ, Goodfellow PN, Cooke HJ (1992) Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis. Nat Genet 2:275–282CrossRefPubMedGoogle Scholar
  9. Fauser F, Schmil S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359CrossRefPubMedGoogle Scholar
  10. Fu S, Lv Z, Gao Z, Wu H, Pang J, Zhang B, Dong Q, Guo X, Wang XJ, Birchler JA, Han F (2013) De novo centromere formation on a chromosome fragment in maize. Proc Natl Acad Sci U S A 110:6033–6036CrossRefPubMedCentralPubMedGoogle Scholar
  11. Gaeta RT, Masonbrink RE, Krishnaswamy L, Zhao C, Birchler JA (2012) Synthetic chromosome platforms in plants. Annu Rev Plant Biol 63:307–330CrossRefPubMedGoogle Scholar
  12. Gaeta RT, Masonbrink RE, Zhao C, Sanyal A, Krishnaswamy L, Birchler JA (2013) In vivo modification of a maize engineered minichromosome. Chromosoma 122:221–232CrossRefPubMedGoogle Scholar
  13. Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci U S A 93:9975–9979CrossRefPubMedCentralPubMedGoogle Scholar
  14. Han F, Lamb J, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci, U S A 103:3238–3243Google Scholar
  15. Han F, Gao Z, Birchler JA (2009) Centromere inactivation and reactivation reveals both epigenetic and genetic components for centromere specification. Plant Cell 21:1929–1939CrossRefPubMedCentralPubMedGoogle Scholar
  16. Heller R, Brown KE, Burgtof C, Brown WR (1996) Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc Natl Acad Sci U S A 93:7125–7130CrossRefPubMedCentralPubMedGoogle Scholar
  17. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188CrossRefPubMedCentralPubMedGoogle Scholar
  18. Kapusi E, Ma L, Teo CH, Hensel G, Himmelbach A, Schubert I, Mette MF, Kumlehn J, Houben A (2012) Telomere-mediated truncation of barley chromosomes. Chromosoma 121:181–190CrossRefPubMedGoogle Scholar
  19. Kliebenstein DJ (2014) Synthetic biology of metabolism: using natural variation to reverse engineer systems. Curr Opin Plant Biol 19:20–26CrossRefPubMedGoogle Scholar
  20. Masonbrink RE, Birchler JA (2012a) Accumulation of multiple copies of maize minichromosomes. Cytogenet Genome Res 137:50–59CrossRefPubMedGoogle Scholar
  21. Masonbrink RE, Birchler JA (2012b) Multiple maize minichromosomes in meiosis. Chromosom Res 20:395–402CrossRefGoogle Scholar
  22. Murray AW, Szostak JW (1983) Construction of artificial chromosomes in yeast. Nature 305:189–193CrossRefPubMedGoogle Scholar
  23. Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A 102:9842–9847CrossRefPubMedCentralPubMedGoogle Scholar
  24. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693CrossRefPubMedGoogle Scholar
  25. Nelson A, Lamb J, Kobrossly P, Shippen D (2011) Parameters affecting telomere-mediated chromosomal truncation in Arabidopsis. Plant Cell 23:2263–2273CrossRefPubMedCentralPubMedGoogle Scholar
  26. Ow DW (2011) Recombinase-mediated gene stacking as a transformation operating system. J Integr Plant Biol 53:512–519CrossRefPubMedGoogle Scholar
  27. Patron NJ (2014) DNA assembly for plant biology: techniques and tools. Curr Opin Plant Biol 19:14–19CrossRefPubMedGoogle Scholar
  28. Phan BH, Jin W, Topp CN, Zhong CX, Jiang J, Dawe RK, Parrott WA (2007) Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA. Transgenic Res 16:341–351CrossRefPubMedGoogle Scholar
  29. Ravi M, Chan SW (2010) Haploid plant produced by centromere-mediated genome elimination. Nature 464:615–618CrossRefPubMedGoogle Scholar
  30. Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127–136CrossRefPubMedGoogle Scholar
  31. Roman H (1947) Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize. Genetics 32:391–409PubMedCentralPubMedGoogle Scholar
  32. Roman H (1948) Directed fertilization in maize. Proc Natl Acad Sci U S A 34:36–42CrossRefPubMedCentralPubMedGoogle Scholar
  33. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F et al (2009) The B73 maize genome: complexity, diversity and dynamics. Science 326:1112–1115CrossRefPubMedGoogle Scholar
  34. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688CrossRefPubMedGoogle Scholar
  35. Srivastava V, Ow DW (2001) Single-copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Mol Biol 46:561–566CrossRefPubMedGoogle Scholar
  36. Srivastava V, Ariza-Nieto M, Wilson AJ (2004) Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol J 2:169–179CrossRefPubMedGoogle Scholar
  37. Teo CH, Ma L, Kapusi E, Hensel G, Kumlehn J, Schubert I, Houben A, Mette MF (2011) Induction of telomere-mediated chromosomal truncation and stability of truncated chromosomes in Arabidopsis thaliana. Plant J 68:28–39CrossRefPubMedGoogle Scholar
  38. Vega JM, Yu W, Han F, Kato A, Peters EM, Zhang ZJ, Birchler JA (2008) Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors. Plant Mol Biol 66:587–598CrossRefPubMedGoogle Scholar
  39. Wolfgruber TK, Sharma A, Schneider KL, Albert PS, Koo DH, Shi J, Gao A, Han F, Lee H, Xu R, Allison J, Birchler JA, Jiang J, Dawe RK, Presting GG (2009) Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons. PLoS Genet 5:e1000743CrossRefPubMedCentralPubMedGoogle Scholar
  40. Xu C, Cheng Z, Yu W (2012) Construction of rice mini-chromosomes by telomere-mediated chromosomal truncation. Plant J 70:1070–1079CrossRefPubMedGoogle Scholar
  41. Yau Y-Y, Wang Y, Thomson JG, Ow DW (2011) Method for Bxb1-mediated site-specific integration in planta. Plant Chromosome Eng: Methods Protoc Methods Mol Biol 701:147–166CrossRefGoogle Scholar
  42. Yu W, Lamb JC, Han F, Birchler JA (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci U S A 103:17331–17336CrossRefPubMedCentralPubMedGoogle Scholar
  43. Yu W, Han F, Gao Z, Vega JM, Birchler JA (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci U S A 104:8924–8929CrossRefPubMedCentralPubMedGoogle Scholar
  44. Zhang B, Lv Z, Pang J, Liu Y, Guo X, Fu S, Li J, Dong Q, Wu HJ, Gao Z, Wang XJ, Han F (2013) Formation of a functional maize centromere after loss of centromeric sequences and gain of ectopic sequences. Plant Cell 25:1979–1989CrossRefPubMedCentralPubMedGoogle Scholar
  45. Zhao X, Xu X, Xie H, Chen S, Jin W (2013) Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiol 163:721–731CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Division of Biological Sciences, 311 Tucker HallUniversity of MissouriColumbiaUSA

Personalised recommendations