Advertisement

Chromosome Research

, Volume 21, Issue 6–7, pp 601–614 | Cite as

Long nonoding RNAs in the X-inactivation center

  • Emily Maclary
  • Michael Hinten
  • Clair Harris
  • Sundeep Kalantry
Review

Abstract

The X-inactivation center is a hotbed of functional long noncoding RNAs in eutherian mammals. These RNAs are thought to help orchestrate the epigenetic transcriptional states of the two X-chromosomes in females as well as of the single X-chromosome in males. To balance X-linked gene expression between the sexes, females undergo transcriptional silencing of most genes on one of the two X-chromosomes in a process termed X-chromosome inactivation. While one X-chromosome is inactivated, the other X-chromosome remains active. Moreover, with a few notable exceptions, the originally established epigenetic transcriptional profiles of the two X-chromosomes is maintained as such through many rounds of cell division, essentially for the life of the organism. The stable and divergent transcriptional fates of the two X-chromosomes, despite residing in a shared nucleoplasm, make X-inactivation a paradigm of epigenetic transcriptional regulation. Originally proposed in 1961 by Mary Lyon, the X-inactivation hypothesis has been validated through much experimentation. In the last 25 years, the discovery and functional characterization has firmly established X-linked long noncoding RNAs as key players in choreographing X-chromosome inactivation.

Keywords

Xist Tsix Polycomb group Jpx Tsx Ftx RepA X-inactivation X-chromosome inactivation Histone modifications Epigenetic regulation 

Abbreviations

ESCs

Embryonic stem cells

Xist

X-inactive specific transcript

PRC1

Polycomb repressive complex 1

PRC2

Polycomb repressive complex 2

H3-K27me3

Histone H3 lysine 27 trimethylation

MSCI

Meiotic sex chromosome inactivation

ORF

Open reading frame

shRNA

Short hairpin RNA

Notes

Acknowledgments

The authors wish to thank members of the Kalantry lab for fruitful discussions. Work in the Kalantry lab is funded by the University of Michigan Endowment for the Basic Sciences, NIH, Ellison Medical Foundation, and the March of Dimes.

References

  1. Anguera MC, Ma W, Clift D, Namekawa S, Kelleher RJ 3rd, Lee JT (2011) Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain. PLoS Genet 7:e1002248PubMedCrossRefGoogle Scholar
  2. Baranov VS (1983) Chromosomal control of early embryonic development in mice. II. Experiments on embryos with structural aberrations of autosomes 7, 9, 14 and 17. Genet Res 41:227–239PubMedCrossRefGoogle Scholar
  3. Borsani G, Tonlorenzi R, Simmler MC, Dandolo L, Arnaud D, Capra V, Grompe M, Pizzuti A, Muzny D, Lawrence C et al (1991) Characterization of a murine gene expressed from the inactive X chromosome. Nature 351:325–329PubMedCrossRefGoogle Scholar
  4. Brockdorff N, Ashworth A, Kay GF, Cooper P, Smith S, Mccabe VM, Norris DP, Penny GD, Patel D, Rastan S (1991) Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351:329–331PubMedCrossRefGoogle Scholar
  5. Brown SD (1991) XIST and the mapping of the X chromosome inactivation centre. Bioessays 13:607–612PubMedCrossRefGoogle Scholar
  6. Brown CJ, Willard HF (1994) The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature 368:154–156PubMedCrossRefGoogle Scholar
  7. Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF (1991a) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44Google Scholar
  8. Brown CJ, Lafreniere RG, Powers VE, Sebastio G, Ballabio A, Pettigrew AL, Ledbetter DH, Levy E, Craig IW, Willard HF (1991b) Localization of the X inactivation centre on the human X chromosome in Xq13. Nature 349:82–84Google Scholar
  9. Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, Willard HF (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542PubMedCrossRefGoogle Scholar
  10. Changolkar LN, Costanzi C, Leu NA, Chen D, Mclaughlin KJ, Pehrson JR (2007) Developmental changes in histone macroH2A1-mediated gene regulation. Mol Cell Biol 27:2758–2764PubMedCrossRefGoogle Scholar
  11. Chaumeil J, LE Baccon P, Wutz A, Heard E (2006) A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20:2223–2237PubMedCrossRefGoogle Scholar
  12. Chureau C, Chantalat S, Romito A, Galvani A, Duret L, Avner P, Rougeulle C (2011) Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum Mol Genet 20:705–718PubMedCrossRefGoogle Scholar
  13. Clemson CM, Mcneil JA, Willard HF, Lawrence JB (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132:259–275PubMedCrossRefGoogle Scholar
  14. Clerc P, Avner P (1998) Role of the region 3' to Xist exon 6 in the counting process of X- chromosome inactivation [see comments]. Nat Genet 19:249–253PubMedCrossRefGoogle Scholar
  15. Cohen DE, Davidow LS, Erwin JA, Xu N, Warshawsky D, Lee JT (2007) The DXPas34 repeat regulates random and imprinted X inactivation. Dev Cell 12:57–71PubMedCrossRefGoogle Scholar
  16. Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393:599–601PubMedCrossRefGoogle Scholar
  17. Csankovszki G, Panning B, Bates B, Pehrson JR, Jaenisch R (1999) Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet 22:323–324PubMedCrossRefGoogle Scholar
  18. Cunningham DB, Segretain D, Arnaud D, Rogner UC, Avner P (1998) The mouse Tsx gene is expressed in Sertoli cells of the adult testis and transiently in premeiotic germ cells during puberty. Dev Biol 204:345–360PubMedCrossRefGoogle Scholar
  19. Eicher EM, Nesbitt MN, Francke U (1972) Cytological identification of the chromosomes involved in Searle’s translocation and the location of the centromere in the X chromosome of the mouse. Genetics 71:643–648PubMedGoogle Scholar
  20. Gieni RS, Hendzel MJ (2009) Polycomb group protein gene silencing, non-coding RNA, stem cells, and cancer. Biochem Cell Biol 87:711–746PubMedCrossRefGoogle Scholar
  21. Grumbach MM, Morishima A, Taylor JH (1963) Human Sex Chromosome Abnormalities in Relation to DNA Replication and Heterochromatinization. Proc Natl Acad Sci U S A 49:581–589PubMedCrossRefGoogle Scholar
  22. Hall LL, Lawrence JB (2003) The cell biology of a novel chromosomal RNA: chromosome painting by XIST/Xist RNA initiates a remodeling cascade. Semin Cell Dev Biol 14:369–378PubMedCrossRefGoogle Scholar
  23. Harper MI, Fosten M, Monk M (1982) Preferential paternal X inactivation in extraembryonic tissues of early mouse embryos. J Embryol Exp Morphol 67:127–135PubMedGoogle Scholar
  24. Hasegawa Y, Brockdorff N, Kawano S, Tsutui K, Tsutui K, Nakagawa S (2010) The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev Cell 19:469–476PubMedCrossRefGoogle Scholar
  25. Heard E, Kress C, Mongelard F, Courtier B, Rougeulle C, Ashworth A, Vourc’h C, Babinet C, Avner P (1996) Transgenic mice carrying an Xist-containing YAC. Hum Mol Genet 5:441–450PubMedCrossRefGoogle Scholar
  26. Heard E, Mongelard F, Arnaud D, Avner P (1999) Xist yeast artificial chromosome transgenes function as X-inactivation centers only in multicopy arrays and not as single copies. Mol Cell Biol 19:3156–3166PubMedGoogle Scholar
  27. Heard E, Rougeulle C, Arnaud D, Avner P, Allis CD, Spector DL (2001) Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107:727–738PubMedCrossRefGoogle Scholar
  28. Jiang J, Jing Y, Cost GJ, Chiang JC, Kolpa HJ, Cotton AM, Carone DM, Carone BR, Shivak DA, Guschin DY, Pearl JR, Rebar EJ, Byron M, Gregory PD, Brown CJ, Urnov FD, Hall LL, Lawrence JB (2013) Translating dosage compensation to trisomy 21. Nature 500:296–300PubMedCrossRefGoogle Scholar
  29. Johnston CM, Newall AE, Brockdorff N, Nesterova TB (2002) Enox, a novel gene that maps 10 kb upstream of Xist and partially escapes X inactivation. Genomics 80:236–244PubMedCrossRefGoogle Scholar
  30. Jonkers I, Monkhorst K, Rentmeester E, Grootegoed JA, Grosveld F, Gribnau J (2008) Xist RNA is confined to the nuclear territory of the silenced X chromosome throughout the cell cycle. Mol Cell Biol 28:5583–5594PubMedCrossRefGoogle Scholar
  31. Jonkers I, Barakat TS, Achame EM, Monkhorst K, Kenter A, Rentmeester E, Grosveld F, Grootegoed JA, Gribnau J (2009) RNF12 is an X-encoded dose-dependent activator of X chromosome inactivation. Cell 139:999–1011PubMedCrossRefGoogle Scholar
  32. Kalantry S, Magnuson T (2006) The polycomb group protein EED is dispensable for the initiation of random X-chromosome inactivation. PLoS Genet 2:e66PubMedCrossRefGoogle Scholar
  33. Kalantry S, Purushothaman S, Bowen RB, Starmer J, Magnuson T (2009) Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature 460:647–651PubMedGoogle Scholar
  34. Keer JT, Hamvas RM, Brockdorff N, Page D, Rastan S, Brown SD (1990) Genetic mapping in the region of the mouse X-inactivation center. Genomics 7:566–572PubMedCrossRefGoogle Scholar
  35. Kohlmaier A, Savarese F, Lachner M, Martens J, Jenuwein T, Wutz A (2004) A chromosomal memory triggered by xist regulates histone methylation in x inactivation. PLoS Biol 2:E171PubMedCrossRefGoogle Scholar
  36. Kunath T, Arnaud D, Uy GD, Okamoto I, Chureau C, Yamanaka Y, Heard E, Gardner RL, Avner P, Rossant J (2005) Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 132:1649–1661PubMedCrossRefGoogle Scholar
  37. Lee JT (2000) Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell 103:17–27PubMedCrossRefGoogle Scholar
  38. Lee JT (2005) Regulation of X-chromosome counting by Tsix and Xite sequences. Science 309:768–771PubMedCrossRefGoogle Scholar
  39. Lee JT, Jaenisch R (1997) Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature 386:275–279PubMedCrossRefGoogle Scholar
  40. Lee JT, Lu N (1999) Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 99:47–57PubMedCrossRefGoogle Scholar
  41. Lee JT, Strauss WM, Dausman JA, Jaenisch R (1996) A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell 86:83–94PubMedCrossRefGoogle Scholar
  42. Lee JT, Davidow LS, Warshawsky D (1999a) Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21:400–404PubMedCrossRefGoogle Scholar
  43. Lee JT, Lu N, Han Y (1999b) Genetic analysis of the mouse X inactivation center defines an 80-kb multifunction domain. Proc Natl Acad Sci U S A 96:3836–3841PubMedCrossRefGoogle Scholar
  44. Leeb M, Wutz A (2007) Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells. J Cell Biol 178:219–229PubMedCrossRefGoogle Scholar
  45. Luikenhuis S, Wutz A, Jaenisch R (2001) Antisense transcription through the Xist locus mediates Tsix function in embryonic stem cells. Mol Cell Biol 21:8512–8520PubMedCrossRefGoogle Scholar
  46. Lyon MF (1962) Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet 14:135–148PubMedGoogle Scholar
  47. Magnuson T, Debrot S, Dimpfl J, Zweig A, Zamora T, Epstein CJ (1985) The early lethality of autosomal monosomy in the mouse. J Exp Zool 236:353–360PubMedCrossRefGoogle Scholar
  48. Mak W, Baxter J, Silva J, Newall AE, Otte AP, Brockdorff N (2002) Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells. Curr Biol 12:1016–1020PubMedCrossRefGoogle Scholar
  49. Mak W, Nesterova TB, DE Napoles M, Appanah R, Yamanaka S, Otte AP, Brockdorff N (2004) Reactivation of the paternal X chromosome in early mouse embryos. Science 303:666–669PubMedCrossRefGoogle Scholar
  50. Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R (1997) Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11:156–166PubMedCrossRefGoogle Scholar
  51. Marahrens Y, Loring J, Jaenisch R (1998) Role of the Xist gene in X chromosome choosing. Cell 92:657–664PubMedCrossRefGoogle Scholar
  52. Margueron R, Reinberg D (2010) The polycomb complex PRC2 and its mark in life. Nature 469:343–349CrossRefGoogle Scholar
  53. Masui S, Ohtsuka S, Yagi R, Takahashi K, Ko MS, Niwa H (2008) Rex1/Zfp42 is dispensable for pluripotency in mouse ES cells. BMC Dev Biol 8:45PubMedCrossRefGoogle Scholar
  54. Mcmahon A, Fosten M, Monk M (1983) X-chromosome inactivation mosaicism in the three germ layers and the germ line of the mouse embryo. J Embryol Exp Morphol 74:207–220PubMedGoogle Scholar
  55. Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68PubMedCrossRefGoogle Scholar
  56. Monkhorst K, Jonkers I, Rentmeester E, Grosveld F, Gribnau J (2008) X inactivation counting and choice is a stochastic process: evidence for involvement of an X-linked activator. Cell 132:410–421PubMedCrossRefGoogle Scholar
  57. Morey C, Arnaud D, Avner P, Clerc P (2001) Tsix-mediated repression of Xist accumulation is not sufficient for normal random X inactivation. Hum Mol Genet 10:1403–1411PubMedCrossRefGoogle Scholar
  58. Namekawa SH, Park PJ, Zhang LF, Shima JE, Mccarrey JR, Griswold MD, Lee JT (2006) Postmeiotic sex chromatin in the male germline of mice. Curr Biol 16:660–667PubMedCrossRefGoogle Scholar
  59. Namekawa SH, Payer B, Huynh KD, Jaenisch R, Lee JT (2010) Two-step imprinted X inactivation: repeat versus genic silencing in the mouse. Mol Cell Biol 30:3187–3205PubMedCrossRefGoogle Scholar
  60. Navarro P, Page DR, Avner P, Rougeulle C (2006) Tsix-mediated epigenetic switch of a CTCF-flanked region of the Xist promoter determines the Xist transcription program. Genes Dev 20:2787–2792PubMedCrossRefGoogle Scholar
  61. Navarro P, Chambers I, Karwacki-Neisius V, Chureau C, Morey C, Rougeulle C, Avner P (2008) Molecular coupling of Xist regulation and pluripotency. Science 321:1693–1695PubMedCrossRefGoogle Scholar
  62. Navarro P, Chantalat S, Foglio M, Chureau C, Vigneau S, Clerc P, Avner P, Rougeulle C (2009) A role for non-coding Tsix transcription in partitioning chromatin domains within the mouse X-inactivation centre. Epigenetics Chromatin 2:8PubMedCrossRefGoogle Scholar
  63. Navarro P, Oldfield A, Legoupi J, Festuccia N, Dubois A, Attia M, Schoorlemmer J, Rougeulle C, Chambers I, Avner P (2010) Molecular coupling of Tsix regulation and pluripotency. Nature 468:457–460PubMedCrossRefGoogle Scholar
  64. Nesterova TB, Senner CE, Schneider J, Alcayna-Stevens T, Tattermusch A, Hemberger M, Brockdorff N (2011) Pluripotency factor binding and Tsix expression act synergistically to repress Xist in undifferentiated embryonic stem cells. Epigenetics Chromatin 4:17PubMedCrossRefGoogle Scholar
  65. Ogawa Y, Lee JT (2003) Xite, X-inactivation intergenic transcription elements that regulate the probability of choice. Mol Cell 11:731–743PubMedCrossRefGoogle Scholar
  66. Ohhata T, Hoki Y, Sasaki H, Sado T (2006) Tsix-deficient X chromosome does not undergo inactivation in the embryonic lineage in males: implications for Tsix-independent silencing of Xist. Cytogenet Genome Res 113:345–349PubMedCrossRefGoogle Scholar
  67. Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:644–649PubMedCrossRefGoogle Scholar
  68. Okamoto I, Arnaud D, Le Baccon P, Otte AP, Disteche CM, Avner P, Heard E (2005) Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438:369–373PubMedCrossRefGoogle Scholar
  69. Patrat C, Okamoto I, Diabangouaya P, Vialon V, Le Baccon P, Chow J, Heard E (2009) Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice. Proc Natl Acad Sci U S A 106:5198–5203PubMedCrossRefGoogle Scholar
  70. Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996) Requirement for Xist in X chromosome inactivation. Nature 379:131–137PubMedCrossRefGoogle Scholar
  71. Perche PY, Vourc’h C, Konecny L, Souchier C, Robert-Nicoud M, Dimitrov S, Khochbin S (2000) Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density. Curr Biol 10:1531–1534PubMedCrossRefGoogle Scholar
  72. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, De La Cruz CC, Otte AP, Panning B, Zhang Y (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–135PubMedCrossRefGoogle Scholar
  73. Pullirsch D, Hartel R, Kishimoto H, Leeb M, Steiner G, Wutz A (2010) The Trithorax group protein Ash2l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation. Development 137:935–943PubMedCrossRefGoogle Scholar
  74. Rasmussen TP, Mastrangelo MA, Eden A, Pehrson JR, Jaenisch R (2000) Dynamic relocalization of histone MacroH2A1 from centrosomes to inactive X chromosomes during X inactivation [In Process Citation]. J Cell Biol 150:1189–1198PubMedCrossRefGoogle Scholar
  75. Rastan S (1982) Timing of X-chromosome inactivation in postimplantation mouse embryos. J Embryol Exp Morphol 71:11–24PubMedGoogle Scholar
  76. Rastan S (1983) Non-random X-chromosome inactivation in mouse X-autosome translocation embryos–location of the inactivation centre. J Embryol Exp Morphol 78:1–22PubMedGoogle Scholar
  77. Rastan S, Brown SD (1990) The search for the mouse X-chromosome inactivation centre. Genet Res 56:99–106PubMedCrossRefGoogle Scholar
  78. Rastan S, Robertson EJ (1985) X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. J Embryol Exp Morphol 90:379–388PubMedGoogle Scholar
  79. Rougeulle C, Chaumeil J, Sarma K, Allis CD, Reinberg D, Avner P, Heard E (2004) Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol Cell Biol 24:5475–5484PubMedCrossRefGoogle Scholar
  80. Sado T, Wang Z, Sasaki H, Li E (2001) Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 128:1275–1286PubMedGoogle Scholar
  81. Sado T, Okano M, Li E, Sasaki H (2004) De novo DNA methylation is dispensable for the initiation and propagation of X chromosome inactivation. Development 131:975–982PubMedCrossRefGoogle Scholar
  82. Sado T, Hoki Y, Sasaki H (2005) Tsix silences Xist through modification of chromatin structure. Dev Cell 9:159–165PubMedCrossRefGoogle Scholar
  83. Sauvageau M, Sauvageau G (2010) Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7:299–313PubMedCrossRefGoogle Scholar
  84. Savarese F, Flahndorfer K, Jaenisch R, Busslinger M, Wutz A (2006) Hematopoietic precursor cells transiently reestablish permissiveness for X inactivation. Mol Cell Biol 26:7167–7177PubMedCrossRefGoogle Scholar
  85. Schoeftner S, Sengupta AK, Kubicek S, Mechtler K, Spahn L, Koseki H, Jenuwein T, Wutz A (2006) Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J 25:3110–3122PubMedCrossRefGoogle Scholar
  86. Sheardown SA, Duthie SM, Johnston CM, Newall AE, Formstone EJ, Arkell RM, Nesterova TB, Alghisi GC, Rastan S, Brockdorff N (1997) Stabilization of Xist RNA mediates initiation of X chromosome inactivation. Cell 91:99–107PubMedCrossRefGoogle Scholar
  87. Silva J, Mak W, Zvetkova I, Appanah R, Nesterova TB, Webster Z, Peters AH, Jenuwein T, Otte AP, Brockdorff N (2003) Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 4:481–495PubMedCrossRefGoogle Scholar
  88. Simmler MC, Cunningham DB, Clerc P, Vermat T, Caudron B, Cruaud C, Pawlak A, Szpirer C, Weissenbach J, Claverie JM, Avner P (1996) A 94 kb genomic sequence 3' to the murine Xist gene reveals an AT rich region containing a new testis specific gene Tsx. Hum Mol Genet 5:1713–1726PubMedCrossRefGoogle Scholar
  89. Steward MM, Lee JS, O’Donovan A, Wyatt M, Bernstein BE, Shilatifard A (2006) Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat Struct Mol Biol 13:852–854PubMedCrossRefGoogle Scholar
  90. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270:488–498PubMedCrossRefGoogle Scholar
  91. Sun S, Del Rosario BC, Szanto A, Ogawa Y, Jeon Y, Lee JT (2013) Jpx RNA activates Xist by evicting CTCF. Cell 153:1537–1551PubMedCrossRefGoogle Scholar
  92. Surface LE, Thornton SR, Boyer LA (2010) Polycomb group proteins set the stage for early lineage commitment. Cell Stem Cell 7:288–298PubMedCrossRefGoogle Scholar
  93. Takagi N (1980) Primary and secondary nonrandom X chromosome inactivation in early female mouse embryos carrying Searle’s translocation T(X; 16)16H. Chromosoma 81:439–459PubMedCrossRefGoogle Scholar
  94. Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256:640–642PubMedCrossRefGoogle Scholar
  95. Takagi N, Wake N, Sasaki M (1978) Cytologic evidence for preferential inactivation of the paternally derived X chromosome in XX mouse blastocysts. Cytogenet Cell Genet 20:240–248PubMedCrossRefGoogle Scholar
  96. Tanasijevic B, Rasmussen TP (2011) X chromosome inactivation and differentiation occur readily in ES cells doubly-deficient for macroH2A1 and macroH2A2. PLoS One 6:e21512PubMedCrossRefGoogle Scholar
  97. Tian D, Sun S, Lee JT (2010) The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143:390–403PubMedCrossRefGoogle Scholar
  98. Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu X, Deng CX, Burgoyne PS (2005) Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37:41–47PubMedGoogle Scholar
  99. Vigneau S, Augui S, Navarro P, Avner P, Clerc P (2006) An essential role for the DXPas34 tandem repeat and Tsix transcription in the counting process of X chromosome inactivation. Proc Natl Acad Sci U S A 103:7390–7395PubMedCrossRefGoogle Scholar
  100. Webb S, De Vries TJ, Kaufman MH (1992) The differential staining pattern of the X chromosome in the embryonic and extraembryonic tissues of postimplantation homozygous tetraploid mouse embryos. Genet Res 59:205–214PubMedCrossRefGoogle Scholar
  101. West JD, Frels WI, Chapman VM, Papaioannou VE (1977) Preferential expression of the maternally derived X chromosome in the mouse yolk sac. Cell 12:873–882PubMedCrossRefGoogle Scholar
  102. Williams LH, Kalantry S, Starmer J, Magnuson T (2011) Transcription precedes loss of Xist coating and depletion of H3K27me3 during X-chromosome reprogramming in the mouse inner cell mass. Development 138:2049–2057PubMedCrossRefGoogle Scholar
  103. Wutz A, Jaenisch R (2000) A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 5:695–705PubMedCrossRefGoogle Scholar
  104. Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30:167–174PubMedCrossRefGoogle Scholar
  105. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Emily Maclary
    • 1
  • Michael Hinten
    • 1
  • Clair Harris
    • 1
  • Sundeep Kalantry
    • 1
  1. 1.Department of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations