Chromosome Research

, Volume 21, Issue 4, pp 393–406 | Cite as

The Ku70 DNA-repair protein is involved in centromere function in a grasshopper species

  • Josefa Cabrero
  • Mohammed Bakkali
  • Beatriz Navarro-Domínguez
  • Francisco J. Ruíz-Ruano
  • Rubén Martín-Blázquez
  • María Dolores López-León
  • Juan Pedro M. Camacho


The Ku70 protein is involved in numerous cell functions, the nonhomologous end joining (NHEJ) DNA repair pathway being the best known. Here, we report a novel function for this protein in the grasshopper Eyprepocnemis plorans. We observed the presence of large Ku70 foci on the centromeres of meiotic and mitotic chromosomes during the cell cycle stages showing the highest centromeric activity (i.e., metaphase and anaphase). The fact that colchicine treatment prevented centromeric location of Ku70, suggests a microtubule-dependent centromeric function for Ku70. Likewise, the absence of Ku70 at metaphase–anaphase centromeres from three males whose Ku70 gene had been knocked down using interference RNA, and the dramatic increase in the frequency of polyploid spermatids observed in these males, suggest that the centromeric presence of Ku70 is required for normal cytokinesis in this species. The centromeric function of Ku70 was not observed in 14 other grasshopper and locust species, or in the mouse, thus suggesting that it is an autapomorphy in E. plorans.


Autapomorphy Centromere Eyprepocnemis plorans Gene knockdown Immunofluorescence Kinetochore Ku70 Ku80 Microtubules Orthoptera RNAi Spindle assembly checkpoint 



Plus ends of growing microtubules


Adenomatous polyposis coli protein




Days from the first injection


DNA-dependent protein kinase catalytic subunit


Double-stranded DNA breaks


End binding 1 protein


Feulgen image analysis densitometry


Phosphorylated form of the H2AX histone


Glyceraldehyde-3-phosphate dehydrogenase


Homologous recombination


Nonhomologous end joining


Interference RNA


Ribosomal protein 49


Spindle assembly checkpoint



We thank R. Jiménez for providing us with mouse spermatocytes, M. Ruiz-Estévez for giving us an E. plorans cDNA aliquote, and T. López for technical assistance. This study was supported by grants from the Spanish Ministerio de Ciencia e Innovación (CGL2009-11917 and BFU2010-16438) and Plan Andaluz de Investigación (CVI-6649), and was partially performed by FEDER funds. M. Bakkali was supported by a Ramón y Cajal fellowship from the Spanish Ministerio de Ciencia e Innovación.

Supplementary material

10577_2013_9367_Fig6_ESM.jpg (94 kb)
Fig. S1

The centromeric location of Ku70 also occurs during mitosis in E. plorans. a, b Spermatogonial mitotic metaphase. c, d Embryo mitotic metaphase cell. e, f Embryo mitotic metaphase from a neuroblast cell (of giant size). Note the presence of centromeric foci of Ku70 in the three cells. This was observed in 100 % of the analyzed cells. Bar = 10 μm. (JPEG 94 kb)

10577_2013_9367_MOESM1_ESM.tif (3.8 mb)
High-resolution image (TIFF 3912 kb)
10577_2013_9367_Fig7_ESM.jpg (42 kb)
Fig. S2

Absence of centromeric immunofluorescence signals for Ku70 at meiotic metaphase I in 14 grasshopper species and the mouse. Examples are shown for Ku70 (a, c, e) and DAPI+Ku70 (b, d, f) in the grasshopper species O. panteli (a, b) and S. azurescens (c, d), and the mouse (e, f). Bar = 10 μm. (JPEG 41 kb)

10577_2013_9367_MOESM2_ESM.tif (1.7 mb)
High-resolution image (TIFF 1780 kb)
10577_2013_9367_Fig8_ESM.jpg (52 kb)
Fig. S3

Presence of polyploid and binucleate cells in RNAi males. a Two tetraploid spermatogonia at mitotic prometaphase. b Tetraploid metaphase I cell. c Binucleate cell. (JPEG 52 kb)

10577_2013_9367_MOESM3_ESM.tif (3.1 mb)
High-resolution image (TIFF 3201 kb)


  1. Åström SU, Okamura SM, Rine J (1999) Yeast cell-type regulation of DNA repair. Nature 397:310PubMedCrossRefGoogle Scholar
  2. Bertinato J, Schild-Poulter C, Hache RJG (2001) Nuclear localization of Ku antigen is promoted independently by basic motifs in the Ku70 and Ku80 subunits. J Cell Sci 114:89–99PubMedGoogle Scholar
  3. Bhattacharyya B, Pnada D, Gupta S, Banerjee M (2008) Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev 28:155–183PubMedCrossRefGoogle Scholar
  4. Cabrero J, Teruel M, Carmona FD, Camacho JPM (2007a) Histone H2AX phosphorylation is associated with most meiotic events in grasshopper. Cytogenet Genome Res 116:311–315PubMedCrossRefGoogle Scholar
  5. Cabrero J, Palomino-Morales RJ, Camacho JPM (2007b) The DNA-repair Ku70 protein is located in the nucleus and tail of elongating spermatids in grasshoppers. Chromosome Res 15:1093–1100PubMedCrossRefGoogle Scholar
  6. Calvente A, Viera A, Page J et al (2005) DNA-double strand breaks and homology search: inferences from a species with incomplete pairing and synapsis. J Cell Sci 118:2957–2963PubMedCrossRefGoogle Scholar
  7. Camacho JPM, Carballo AR, Cabrero J (1980) The B-chromosome system of the grasshopper Eyprepocnemis plorans subsp. plorans (Charpentier). Chromosoma 80:163–176CrossRefGoogle Scholar
  8. Camacho JPM, Cabrero J, Viseras E, López-León MD, Navas-Castillo J, Alché JD (1991) G-banding in two species of grasshoppers and its relationship to C, N and fluorescence banding techniques. Genome 34:638–643CrossRefGoogle Scholar
  9. Camacho JPM, Bakkali M, Corral JM et al (2002) Host recombination is dependent on the degree of parasitism. Proc R Soc B 269:2173–2177PubMedCrossRefGoogle Scholar
  10. Dikovskaya D, Schiffmann D, Newton IP et al (2007) Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. J Cell Biol 176:183–195PubMedCrossRefGoogle Scholar
  11. Dong Y, Friedrich M (2005) Nymphal RNAi: systemic RNAi mediated gene knockdown in juvenile grasshopper. BMC Biotechnol 5:25PubMedCrossRefGoogle Scholar
  12. Fox DP, Hewitt GM, Hall DJ (1974) DNA replication and RNA transcription of euchromatic and heterochromatic chromosome regions during grasshopper meiosis. Chromosoma 45:43–62PubMedCrossRefGoogle Scholar
  13. Gao YJ, Chaudhuri J, Zhu CM, Davidson L, Weaver DT, Alt FW (1998) A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity 9:367–376PubMedCrossRefGoogle Scholar
  14. Gell D, Jackson SP (1999) Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. Nucl Acids Res 27:3494–3502PubMedCrossRefGoogle Scholar
  15. Goedecke W, Eijpe M, Offenberg HH, van Aalderen M, Heyting C (1999) Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat Genet 23:194–198PubMedCrossRefGoogle Scholar
  16. Green RA, Wollman R, Kaplan KB (2005) APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Biol Cell 16:4609–4622PubMedCrossRefGoogle Scholar
  17. Gu YS, Seidl KJ, Rathbun GA et al (1997) Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 7:653–665PubMedCrossRefGoogle Scholar
  18. Gu YS, Sekiguchi J, Gao YJ et al (2000) Defective embryonic neurogenesis in Ku-deficient but not DNA-dependent protein kinase catalytic subunit-deficient mice. Proc Natl Acad Sci USA 97:2668–2673PubMedCrossRefGoogle Scholar
  19. Howell BJ, Moree B, Farrar EM, Stewart S, Fang G, Salmon ED (2004) Spindle checkpoint protein dynamics at kinetochores in living cells. Curr Biol 14:953–964PubMedCrossRefGoogle Scholar
  20. Kang SW, Shin YJ, Shim YJ, Jeong SY, Park IS, Min BH (2005) Clusterin interacts with SCLIP (SCG10-like protein) and promotes neurite outgrowth of PC12 cells. Exp Cell Res 309:305–315PubMedCrossRefGoogle Scholar
  21. Kaplan KB, Burds AA, Swedlow JR, Bekir SS, Sorger PK, Näthke IS (2001) A role for the adenomatous polyposis coli protein in chromosome segregation. Nat Cell Biol 3:429–432PubMedCrossRefGoogle Scholar
  22. Katz DJ, Beer MA, Levorse JM, Tilghman SM (2005) Functional characterization of a novel Ku70/80 pause site at the H19/Igf2 imprinting control region. Mol Cell Biol 25:3855–3863PubMedCrossRefGoogle Scholar
  23. Koike M (2002) Dimerization, translocation and localization of Ku70 and Ku80 proteins. J Rad Res 43:223–236CrossRefGoogle Scholar
  24. Koike M, Koike A (2005) The Ku70-binding site of Ku80 is required for the stabilization of Ku70 in the cytoplasm, for the nuclear translocation of Ku80, and for Ku80-dependent DNA repair. Exp Cell Res 305:266–276PubMedCrossRefGoogle Scholar
  25. Koike M, Awaji T, Kataoka M et al (1999) Differential subcellular localization of DNA-dependent protein kinase components Ku and DNA-PKcs during mitosis. J Cell Sci 112:4031–4039PubMedGoogle Scholar
  26. Koike M, Shiomi T, Koike A (2001) Dimerization and nuclear localization of Ku proteins. J Biol Chem 276:11167–11173PubMedCrossRefGoogle Scholar
  27. Lee SE, Pâques F, Sylvan J, Haber JE (1999) Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr Biol 9:767–770PubMedCrossRefGoogle Scholar
  28. Lee K-J, Lin Y-F, Chou H-Y et al (2011) Involvement of DNA-dependent protein kinase in normal cell cycle progression through mitosis. J Biol Chem 286:12796–12802PubMedCrossRefGoogle Scholar
  29. Martinez JJ, Seveau S, Veiga E, Matsuyama S, Cossart P (2005) Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 123:1013–1023PubMedCrossRefGoogle Scholar
  30. Monferran S, Muller C, Mourey L, Frit P, Salles B (2004a) The membrane-associated form of the DNA repair protein Ku is involved in cell adhesion to fibronectin. J Mol Biol 337:503–511PubMedCrossRefGoogle Scholar
  31. Monferran S, Paupert J, Dauvillier S, Salles B, Muller C (2004b) The membrane form of the DNA repair protein Ku interacts at the cell surface with metalloproteinase 9. EMBO J 23:3758–3768PubMedCrossRefGoogle Scholar
  32. Muñoz E, Perfectti F, Martín-Alganza A, Camacho JPM (1998) Parallel effects of a B chromosome and a mite that decrease female fitness in the grasshopper Eyprepocnemis plorans. Proc Roy Soc B 265:1903–1909CrossRefGoogle Scholar
  33. Normand G, King RW (2010) Understanding cytokinesis failure. In: Poon, R.Y.C. (ed) Polyploidization and cancer. Springer, New YorkGoogle Scholar
  34. Nussenzweig A, Chen C, da Costa Soares V, Sanchez M, Sokol K, Nussenzweig MC, Li GC (1996) Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382:551–555PubMedCrossRefGoogle Scholar
  35. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in sequential recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895PubMedCrossRefGoogle Scholar
  36. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:2002–2007CrossRefGoogle Scholar
  37. Pöggeler S, Kuck U (2006) Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene 378:1–10PubMedCrossRefGoogle Scholar
  38. Rieder CL, Palazzo RE (1992) Colcemid and the mitotic cycle. J Cell Sci 102:387–392PubMedGoogle Scholar
  39. Rodgers W, Jordan SJ, Capra JD (2002) Transient association of Ku with nuclear substrates characterized using fluorescence photobleaching. J Immunol 168:2348–2355PubMedGoogle Scholar
  40. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  41. Ruiz-Ruano FJ, Ruiz-Estévez M, Rodríguez-Pérez J, López-Pino JL, Cabrero J, Camacho JPM (2011) DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria. Cytogenet Genome Res 134:120–126PubMedCrossRefGoogle Scholar
  42. Sawada M, Sun WY, Hayes P, Leskov K, Boothman DA, Matsuyama S (2003) Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 5:320–329PubMedCrossRefGoogle Scholar
  43. Scherthan H, Trelles-Sticken E (2008) Absence of yKu/Hdf1 but not myosin-like proteins alters chromosome dynamics during prophase I in yeast. Differentiation 76:91–98PubMedGoogle Scholar
  44. Schweitzer JK, D’Souza-Schorey C (2005) A requirement for ARF6 during the completion of cytokinesis. Exp Cell Res 311:74–83PubMedCrossRefGoogle Scholar
  45. Shi Q, King RW (2005) Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437:1038–1042PubMedCrossRefGoogle Scholar
  46. Shuaib M, Ouararhni K, Dimitrov S, Hamiche A (2010) HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres. Proc Natl Acad Sci USA 107:1349–1354PubMedCrossRefGoogle Scholar
  47. Singson A (2001) Every sperm is sacred: fertilization in Caenorhabditis elegans. Dev Biol 230:101–109PubMedCrossRefGoogle Scholar
  48. Song KY, Jung YS, Jung DH, Lee I (2001) Human Ku70 interacts with heterochromatin protein 1 alpha. J Biol Chem 276:8321–8327PubMedCrossRefGoogle Scholar
  49. Takata M, Sasaki MS, Sonoda E et al (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17:5497–5508PubMedCrossRefGoogle Scholar
  50. Tirnauer JS, Canman JC, Salmon ED, Mitchison TJ (2002) EB1 targets to kinetochores with attached, polymerizing microtubules. Mol Biol Cell 13:4308–4316PubMedCrossRefGoogle Scholar
  51. Tuteja R, Tuteja N (2000) Ku autoantigen: a multifunctional DNA-binding protein. Crit Rev Biochem Mol Biol 35:1–33PubMedCrossRefGoogle Scholar
  52. Van Hiel MB, Van Wielendaele P, Temmerman L et al (2009) Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions. BMC Mol Biol 10:56PubMedCrossRefGoogle Scholar
  53. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:7CrossRefGoogle Scholar
  54. Viera A, Santos JL, Page J et al (2004) DNA double-strand-break, recombination and synapsis, the timing of meiosis differs in grasshoppers and flies. EMBO Rep 5:385–391PubMedCrossRefGoogle Scholar
  55. Yang CR, Yeh SY, Leskov K et al (1999) Isolation of Ku70-binding proteins (KUBs). Nucleic Acids Res 27:2165–2174PubMedCrossRefGoogle Scholar
  56. Zhou B, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439PubMedCrossRefGoogle Scholar
  57. Zurita S, Cabrero J, López-León MD, Camacho JPM (1998) Polymorphism regeneration for a neutralized selfish B chromosome. Evolution 52:274–277CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Josefa Cabrero
    • 1
  • Mohammed Bakkali
    • 1
  • Beatriz Navarro-Domínguez
    • 1
  • Francisco J. Ruíz-Ruano
    • 1
  • Rubén Martín-Blázquez
    • 1
  • María Dolores López-León
    • 1
  • Juan Pedro M. Camacho
    • 1
  1. 1.Departamento de Genética, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations