Chromosome Research

, Volume 21, Issue 2, pp 121–136 | Cite as

High chromosome variability and the presence of multivalent associations in buthid scorpions

  • Viviane Fagundes Mattos
  • Doralice Maria Cella
  • Leonardo Sousa Carvalho
  • Denise Maria Candido
  • Marielle Cristina Schneider


In this study, we investigated the mitotic and meiotic chromosomes of 11 Buthidae scorpion species, belonging to three genera (Ananteris, Rhopalurus and Tityus), to obtain detailed knowledge regarding the mechanisms underlying the intraspecific and/or interspecific diversity of chromosome number and the origin of the complex chromosome associations observed during meiosis. The chromosomes of all species did not exhibit a localised centromere region and presented synaptic and achiasmatic behaviour during meiosis I. Spermatogonial and/or oogonial metaphase cells of these buthids showed diploid numbers range from 2n = 6 to 2n = 28. In most species, multivalent chromosome associations were observed in pachytene and postpachytene nuclei. Moreover, intraspecific variability associated with the presence or absence of chromosome chains and the number of chromosomes in the complex meiotic configurations was observed in some species of these three genera. Silver-impregnated cells revealed that the number and location of nucleolar organiser regions (NORs) remained unchanged despite extensive chromosome variation; notably, two NORs located on the terminal or subterminal chromosome regions were commonly observed for all species. C-banded and fluorochrome-stained cells showed that species with conspicuous blocks of heterochromatin exhibited the lowest rate of chromosomal rearrangement. Based on the investigation of mitotic and meiotic cells, we determined that the intraspecific variability occurred as a consequence of fission/fusion-type chromosomal rearrangements in Ananteris and Tityus species and reciprocal translocation in Rhopalurus species. Furthermore, we verified that individuals presenting the same diploid number differ in structural chromosome organisation, giving rise to intraspecific differences of chromosome association in meiotic cells (bivalent-like elements or chromosome chains).


chromosome rearrangements evolution heterozygosity holocentric meiosis nucleolar organiser region 



Chromosome chain


Coefficient of variation


Diploid set length


Nucleolar organiser region


“Bivalent” or bivalent-like element


Chain of three chromosomes


Chain of four chromosomes


Chain of six chromosomes


Chain of eight chromosomes


Chain of 10 chromosomes


Chain of 28 chromosomes


Chromomycin A3





The authors would like to thank Dr. Ricardo Pinto-da-Rocha and MSc Sabrina Outeda-Jorge from the Universidade de São Paulo, Dr. Douglas Araujo from the Universidade Estadual de Mato Grosso do Sul and Centro de Controle de Zoonoses from Ituiutaba, state of Minas Gerais, Brazil, for collecting some of the Buthidae specimens. This research was supported through funding from the Fundação de Amparo a Pesquisa do Estado de São Paulo, FAPESP (2010/14226-2, 2011/21643-1) and Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq (478630/2010-7). This work was also part of the “Programa de Pesquisas em Biodiversidade do Semiárido—PPBio Semiárido” (CNPq 558317/2009-0). Collecting permits were granted by the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) and the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) (25471-1, 25472-1 and 15157-1).


  1. Bertani R, Martins R, Carvalho MA (2005) Notes on Tityus confluens Borelli, 1899 (Scorpiones: Buthidae) in Brazil. Zootaxa 869:1–7Google Scholar
  2. Brieger FG, Graner EA (1943) On the cytology of Tityus bahiensis with special reference to meiotic prophase. Genetics 28:269–274PubMedGoogle Scholar
  3. Cabrero J, Camacho JPM (2008) Location and expression of ribosomal RNA genes in grasshoppers: abundance of silent and cryptic loci. Chromosome Res 16:595–607PubMedCrossRefGoogle Scholar
  4. Christian A, McNiel E, Robinson J, Drabek R, LaRue S, Waldren C, Bedford J (1998) A versatile image analysis approach for simultaneous chromosome identification and localization of FISH probes. Cytogenet Cell Genet 82:172–179PubMedCrossRefGoogle Scholar
  5. Da Silva CRM, González-Elizondo MS, Vanzela AAL (2008) Chromosome reduction in Eleocaris maculosa (Cyperacea). Cytogenet Genome Res 122:175–180PubMedCrossRefGoogle Scholar
  6. Díez M, Santos JL (1993) Synapsis in a paracentric inversion heterozygote of Chrothippus jacobsi (grasshopper). Heredity 70:231–236CrossRefGoogle Scholar
  7. Dutrillaux AM, Dutrillaux B (2012) Chromosome analysis of 82 species of Scarabaeoidea (Coleoptera), with special focus on NOR localization. Cytogenet Genome Res 136:208–219PubMedCrossRefGoogle Scholar
  8. Gomes FP (1982) Curso de estatística experimental, 10th edn. NobelGoogle Scholar
  9. Gross MC, Feldberg E, Cella DM, Schneider MC, Schneider CH, Porto JIR, Martins C (2009) Intriguing evidence of translocations in Discus fish (Shymphysodon, Cichlidae) and a report of the largest meiotic chromosomal chains observed in vertebrates. Heredity 102:435–444PubMedCrossRefGoogle Scholar
  10. Gruetzner F, Ashley T, Rowell DM (2006) How did the platypus get its sex chromosome chain? A comparison of meiotic multiples and sex chromosomes in plants and animals. Chromosoma 115:75–88PubMedCrossRefGoogle Scholar
  11. Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015PubMedCrossRefGoogle Scholar
  12. John B (1990) Meiosis. Cambridge University Press, MelbourneCrossRefGoogle Scholar
  13. Lenarducci ARIP, Pinto-da-Rocha R, Lucas SM (2005) Descrição de uma nova espécie de Rhopalurus Throrell, 1876 (Scorpiones: Buthidae) do nordeste brasileiro. Biota Neotrop 5:1–8CrossRefGoogle Scholar
  14. Lourenço WR (2002) Scorpions of Brazil. Museum National d’ Histoire Naturelle, ParisGoogle Scholar
  15. Lourenço WR (2006) Nouvelle proposition de découpage sous-générique du genre Tityus C.L. Koch, 1836 (Scorpiones, Buthidae). Boletín de la S E A 39:55–67Google Scholar
  16. Lourenço WR (2008) Parthenogenesis in scorpions: some history—new data. J Venom Anim Toxins Incl Trop Dis 14:19–44CrossRefGoogle Scholar
  17. Lourenço WR, Aparecida-da-Silva E (2007) New evidence for a disrupted distribution pattern of the “Tityus confluens” complex, with a description of a new species from the State of Pará, Brazil (Scorpiones, Buthidae). Amazoniana 19:77–86Google Scholar
  18. Lourenço WR, Cabral BC, Ramos ECB (2004) Confirmation of Tityus confluens Borelli, 1899 (Scorpiones, Buthidae) in Brazil and description of a new subspecies from the State of Mato Grosso do Sul. Boletín de la S E A 34:27–30Google Scholar
  19. Lourenço WR, Jesus-Junior MMBG, Limeira-de-Oliveira F (2006) A new species of Tityus C.L. Koch, 1836 (Scorpiones, Buthidae) from the State of Maranhão in Brazil. Boletín de la S E A 38:117–120Google Scholar
  20. Mable BK (2004) ‘Why polyploidy is rarer in animals than in plants’: myths and mechanisms. Biol J Linn Soc 82:453–466CrossRefGoogle Scholar
  21. Makino S (1956) A review of the chromosome numbers in animals. Hokurykan, TokyoGoogle Scholar
  22. Marec F, Sahara K, Traut W (2010) Rise and fall of the W chromosome in Lepidoptera. In: Goldsmith MR, Marec F (eds) Molecular biology and genetics of Lepidoptera. CRS Press, Boca Raton, FL, pp 49–63Google Scholar
  23. Melters DP, Paliulus SV, Korf IF, Chan SWL (2012) Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res 5:579–593CrossRefGoogle Scholar
  24. Moustafa MA, Alaa AM, Sarhan MH, Yassen AE (2005) Chromosomal studies on four Egyptian scorpion species of genus Androctonus (Family: Buthidae). Cytologia 70:161–165CrossRefGoogle Scholar
  25. Piza ST (1939a) Comportamento dos cromossomos na primeira divisão do espermatócito do Tityus bahiensis. Sci Genet 1:255–261Google Scholar
  26. Piza ST (1939b) Considerações em torno da meiose do Tityus bahiensis (Scorpiones-Buthidae) e uma nova teoria sobre a movimentação dos cromossomos. J Agron 2:343–370Google Scholar
  27. Piza ST (1940) Poliploidia natural em Tityus bahiensis (Scorpiones) associada a aberrações cromossômicas espontâneas. Rev Biol e Hyg 10:143–155Google Scholar
  28. Piza ST (1943a) Meiosis in the male of Brazilian scorpion Tityus bahiensis. Rev Agric 18:249–276Google Scholar
  29. Piza ST (1943b) A propósito da meiose de Tityus bahiensis. Rev Agric 18:351–369Google Scholar
  30. Piza ST (1947) Notas sobre cromossômios de alguns escorpiões brasileiros. An Esc Super Agric Luiz de Queiroz 62:169–176CrossRefGoogle Scholar
  31. Piza ST (1957) The chromosomes of Rhopalurus (Scorpiones-Buthidae). Can Entomol 89:565–568CrossRefGoogle Scholar
  32. Prendini L, Wheeler WC (2005) Scorpion higher phylogeny and classification, taxonomic, anarchy, and standards for peer review in online publishing. Cladistics 21:446–494CrossRefGoogle Scholar
  33. Procunier WS (1975) A cytological study of two closely related blackfly species: Cnephia dacotensis and Cnephia ornithophilia (Diptera: Simulidae). Can J Zool 53:1622–1637PubMedCrossRefGoogle Scholar
  34. Reed KM, Sites JW Jr, Greenbaum IF (1992) Synapsis, recombination, and meiotic segregation in the mesquite lizard, Sceloporus grammicusi, complex. I. Pericentric inversion heteromorphism of the F5 cytotype. Cytogenet Cell Genet 61:40–45PubMedCrossRefGoogle Scholar
  35. Rein JO (2012) The scorpion files. Accessed 14 Sept 2012
  36. Rickards GK (1983) Orientation behaviour of chromosome multiples of interchange (reciprocal translocation) heterozygotes. Ann Rev Genet 17:443–498PubMedCrossRefGoogle Scholar
  37. Riess RW, Barker KR, Biesele JJ (1978) Nuclear and chromosomal changes during sperm formation in the scorpion, Centruroides vittatus (Say). Caryologia 31:147–160Google Scholar
  38. Rodríguez-Gil SG, Mola LM, Papeshi AG, Scioscia CL (2002) Cytogenetic heterogeneity in common haplogynae spiders from Argentina (Arachnida, Araneae). J Arachnol 30:47–56CrossRefGoogle Scholar
  39. Schneider MC, Mattos VF, Cella DM (2012) The scorpion cytogenetic database. Retrieved from Accessed 14 Sept 2012
  40. Schneider MC, Zacaro AA, Pinto-da-Rocha R, Candido DM, Cella DM (2009a) A comparative cytogenetic analysis of 2 Bothriuridae species and overview of the chromosome data of Scorpiones. J Hered 5:545–555CrossRefGoogle Scholar
  41. Schneider MC, Zacaro AA, Pinto-da-Rocha R, Candido DM, Cella DM (2009b) Complex meiotic configuration of the holocentric chromosomes: the intriguing case of the scorpion Tityus bahiensis. Chromosome Res 17:883–898PubMedCrossRefGoogle Scholar
  42. Serrano J (1981) Male achiasmatic meiosis in Caraboidea (Coleoptera, Adephaga). Genetica 57:131–137CrossRefGoogle Scholar
  43. Shanahan CM (1989a) Cytogenetics of Australian scorpions. I. Interchange polymorphism in the family Buthidae. Genome 32:882–889CrossRefGoogle Scholar
  44. Shanahan CM (1989b) Cytogenetics of Australian scorpions. II. Chromosome polymorphism in species of Urodacus (family Scorpionidae). Genome 32:890–900CrossRefGoogle Scholar
  45. Sharp HE, Rowell DM (2007) Unprecedented chromosomal diversity and behaviour modify linkage patterns and speciation potential: structural heterozygosity in a Australian spider. J Ev Biol 20:2427–2439CrossRefGoogle Scholar
  46. Soleglad ME, Fet V (2003) High-level systematics and phylogeny of the extant scorpions (Scorpiones: Orthosterni). Euscorpius 11:1–175Google Scholar
  47. Souza CAR, Candido DM, Lourenço WR (2006) Description of the male of Tityus martinpaechi Lourenço, 2001 (Scorpiones, Buthidae). Zootaxa 1260:27–35Google Scholar
  48. Souza CAR, Candido DM, Lucas SM, Brescovit AD (2009) On the Tityus stigmurus complex (Scorpiones, Buthidae). Zootaxa 1987:1–38Google Scholar
  49. Šťáhlavský F, Král J (2004) Karyotypes analysis and achiasmatic meiosis in pseudoscorpions of the family Chthoniidae (Arachnida: Pseudoscorpiones). Hereditas 140:49–60PubMedCrossRefGoogle Scholar
  50. Šťáhlavský F, Král J, Haddad CR (2012) The first cytogenetic characterization of atemnids: pseudoscorpions with the highest chromosome numbers (Arachnida: Pseudoscorpiones). Cytogenet Genome Res 137:22–30PubMedCrossRefGoogle Scholar
  51. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306PubMedCrossRefGoogle Scholar
  52. Sumner AT (2003) Chromosome organization and function. Blackwell, North BerwickGoogle Scholar
  53. Toscano-Gadea CA (2004) Confirmation on parthenogenesis in Tityus trivittatus Kraepelin 1898 (Scorpiones, Buthidae). J Arachnol 32:866–869Google Scholar
  54. Traut W, Clarcke CA (1996) Cytogenetics of a moth species with a low chromosome number, Orgyia thyellina. Hereditas 125:277–283CrossRefGoogle Scholar
  55. Wilson EB (1931) The distribution of sperm-forming materials in scorpions. J Morphol Physiol 52:429–483CrossRefGoogle Scholar
  56. Yamazaki K, Makioka T (2004) Parthenogenesis through five generations in the scorpion Liocheles australasiae (Fabricius 1775) (Scorpiones, Ischnuridae). J Arachnol 32:852–856Google Scholar
  57. Zhang D, Sang T (1999) Physical mapping of ribosomal RNA genes in peonies (Paeonia, Paeoniaceae) by fluorescent in situ hybridization: implications for phylogeny and concerted evolution. Am J Bot 86:735–740PubMedCrossRefGoogle Scholar
  58. Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Ann Rev Genet 33:603–754PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Viviane Fagundes Mattos
    • 1
  • Doralice Maria Cella
    • 1
  • Leonardo Sousa Carvalho
    • 2
  • Denise Maria Candido
    • 3
  • Marielle Cristina Schneider
    • 4
  1. 1.Instituto de Biociências, Departamento de BiologiaUniversidade Estadual Paulista (UNESP)Rio ClaroBrazil
  2. 2.Universidade Federal do Piauí (UFPI)FlorianoBrazil
  3. 3.Instituto ButantanLaboratório Especial de Coleções ZoológicasSão PauloBrazil
  4. 4.Departamento de Ciências BiológicasUniversidade Federal de São Paulo (UNIFESP)DiademaBrazil

Personalised recommendations