Chromosome Research

, Volume 19, Issue 8, pp 969–978 | Cite as

Functional centromeres in Astragalus sinicus include a compact centromere-specific histone H3 and a 20-bp tandem repeat



The centromere plays an essential role for proper chromosome segregation during cell division and usually harbors long arrays of tandem repeated satellite DNA sequences. Although this function is conserved among eukaryotes, the sequences of centromeric DNA repeats are variable. Most of our understanding of functional centromeres, which are defined by localization of a centromere-specific histone H3 (CENH3) protein, comes from model organisms. The components of the functional centromere in legumes are poorly known. The genus Astragalus is a member of the legumes and bears the largest numbers of species among angiosperms. Therefore, we studied the components of centromeres in Astragalus sinicus. We identified the CenH3 homolog of A. sinicus, AsCenH3 that is the most compact in size among higher eukaryotes. A CENH3-based assay revealed the functional centromeric DNA sequences from A. sinicus, called CentAs. The CentAs repeat is localized in A. sinicus centromeres, and comprises an AT-rich tandem repeat with a monomer size of 20 nucleotides.


Leguminosae Fabaceae Chinese milk vetch chromatin immunoprecipitation centromere tandem repeat 



Astragalus sinicus centromere-specific histone H3


Centromere-specific histone H3


Centromeric DNA sequence of Astragalus sinicus


Chromatin immunoprecipitation




Fluorescence in situ hybridization


Glycine max centromere-specific histone H3


Million years


Polymerase chain reaction


Rapid amplification of cDNA ends



This work was supported by the Fellowship Program of the Japan Society for the Promotion of Science (JSPS) to ALT and KN, and partly by the Turkish Higher Education Council and Harran University, Turkey to ALT.


  1. Chou MX, Wei XY, Chen DS, Zhou JC (2006) Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization. J Exp Bot 57:2673–2685PubMedCrossRefGoogle Scholar
  2. Cronk Q, Ojeda I, Pennington RT (2006) Legume comparative genomics: progress in phylogenetics and phylogenomics. Curr Opin Plant Biol 9:99–103PubMedCrossRefGoogle Scholar
  3. Dawe RK, Henikoff S (2006) Centromeres put epigenetics in the driver’s seat. Trends Biochem Sci 31:662–669PubMedCrossRefGoogle Scholar
  4. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885PubMedCrossRefGoogle Scholar
  5. Hall AE, Keith KC, Hall SE, Copenhaver GP, Preuss D (2004) The rapidly evolving field of plant centromeres. Curr Opin Plant Biol 7:108–114PubMedCrossRefGoogle Scholar
  6. Han F, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci U S A 103:3238–3243PubMedCrossRefGoogle Scholar
  7. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102PubMedCrossRefGoogle Scholar
  8. Houben A, Schroeder-Reiter E, Nagaki K et al (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116:275–283PubMedCrossRefGoogle Scholar
  9. Jiang J, Gill BS, Wang GL, Ronald PC, Ward DC (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci U S A 92:4487–4491PubMedCrossRefGoogle Scholar
  10. Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575PubMedCrossRefGoogle Scholar
  11. Kanizay L, Dawe RK (2009) Centromeres: long intergenic spaces with adaptive features. Funct Integr Genomics 9:287–292PubMedCrossRefGoogle Scholar
  12. Kulikova O, Geurts R, Lamine M et al (2004) Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula. Chromosoma 113:276–283PubMedCrossRefGoogle Scholar
  13. Lee HR, Zhang W, Langdon T et al (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci U S A 102:11793–11798PubMedCrossRefGoogle Scholar
  14. Liu Z, Yue W, Li D et al (2008) Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117:445–456PubMedCrossRefGoogle Scholar
  15. Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10:882–891PubMedCrossRefGoogle Scholar
  16. Meraldi P, McAinsh AD, Rheinbay E, Sorger PK (2006) Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7:R23PubMedCrossRefGoogle Scholar
  17. Nagaki K, Murata M (2005) Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Res 13:195–203PubMedCrossRefGoogle Scholar
  18. Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J (2003) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225PubMedGoogle Scholar
  19. Nagaki K, Cheng Z, Ouyang S et al (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145PubMedCrossRefGoogle Scholar
  20. Nagaki K, Kashihara K, Murata M (2009) A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco. Chromosoma 118:249–257PubMedCrossRefGoogle Scholar
  21. Nagaki K, Terada K, Wakimoto M, Kashihara K, Murata M (2010) Centromere targeting of alien CENH3s in Arabidopsis and tobacco cells. Chromosome Res 18:203–211PubMedCrossRefGoogle Scholar
  22. Naito Y, Fujie M, Usami S, Murooka Y, Yamada T (2000) The involvement of a cysteine proteinase in the nodule development in Chinese milk vetch infected with Mesorhizobium huakuii subsp. rengei. Plant Physiol 124:1087–1096PubMedCrossRefGoogle Scholar
  23. Nasuda S, Hudakova S, Schubert I, Houben A, Endo T (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A 102:9842–9847PubMedCrossRefGoogle Scholar
  24. Ogura Y, Shibata F, Sato H, Murata M (2004) Characterization of a CENP-C homolog in Arabidopsis thaliana. Genes Genet Syst 79:139–144PubMedCrossRefGoogle Scholar
  25. Osaloo SK, Maassoumi AA, Murakami N (2003) Molecular systematics of the genus Astragalus L. (Fabaceae): phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacers and chloroplast gene ndhF sequences. Plant Syst Evol 242:1–32CrossRefGoogle Scholar
  26. Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672PubMedGoogle Scholar
  27. Ravi M, Kwong PN, Menorca RM et al (2010) The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana. Genetics 186:461–471PubMedCrossRefGoogle Scholar
  28. Shibata F, Murata M (2004) Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana. J Cell Sci 117:2963–2970PubMedCrossRefGoogle Scholar
  29. Tek AL, Kashihara K, Murata M, Nagaki K (2010) Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon. Chromosome Res 18:337–347PubMedCrossRefGoogle Scholar
  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  31. Ugarkovic D (2005) Functional elements residing within satellite DNAs. EMBO Rep 6:1035–1039PubMedCrossRefGoogle Scholar
  32. Warburton PE, Cooke CA, Bourassa S et al (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7:901–904PubMedCrossRefGoogle Scholar
  33. Wojciechowski MF (2005) Astragalus (Fabaceae): a molecular phylogenetic perspective. Brittonia 57:382–396CrossRefGoogle Scholar
  34. Yasue (1986) Use of Chinese milk vetch as a honeybee plant. Honeybee Sci 7:57–60Google Scholar
  35. Zhang W, Yi C, Bao W et al (2005) The transcribed 165-bp CentO satellite is the major functional centromeric element in the wild rice species Oryza punctata. Plant Physiol 139:306–315PubMedCrossRefGoogle Scholar
  36. Zhong CX, Marshall JB, Topp C et al (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
  2. 2.Department of Agronomy, Faculty of AgricultureHarran UniversityŞanlıurfaTurkey

Personalised recommendations