Chromosome Research

, Volume 18, Issue 7, pp 809–820 | Cite as

Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination

  • Martina Pokorná
  • Marie Rábová
  • Petr Ráb
  • Malcolm A. Ferguson-Smith
  • Willem Rens
  • Lukáš Kratochvíl


The eyelid geckos (family Eublepharidae) include both species with temperature-dependent sex determination and species where genotypic sex determination (GSD) was suggested based on the observation of equal sex ratios at several incubation temperatures. In this study, we present data on karyotypes and chromosomal characteristics in 12 species (Aeluroscalabotes felinus, Coleonyx brevis, Coleonyx elegans, Coleonyx variegatus, Eublepharis angramainyu, Eublepharis macularius, Goniurosaurus araneus, Goniurosaurus lichtenfelderi, Goniurosaurus luii, Goniurosaurus splendens, Hemitheconyx caudicinctus, and Holodactylus africanus) covering all genera of the family, and search for the presence of heteromorphic sex chromosomes. Phylogenetic mapping of chromosomal changes showed a long evolutionary stasis of karyotypes with all acrocentric chromosomes followed by numerous chromosomal rearrangements in the ancestors of two lineages. We have found heteromorphic sex chromosomes in only one species, which suggests that sex chromosomes in most GSD species of the eyelid geckos are not morphologically differentiated. The sexual difference in karyotype was detected only in C. elegans which has a multiple sex chromosome system (X1X2Y). The metacentric Y chromosome evolved most likely via centric fusion of two acrocentric chromosomes involving loss of interstitial telomeric sequences. We conclude that the eyelid geckos exhibit diversity in sex determination ranging from the absence of any sexual differences to heteromorphic sex chromosomes, which makes them an interesting system for exploring the evolutionary origin of sexually dimorphic genomes.

Key words

reptile cytogenetics FISH neo-sex chromosomes eublepharid lizards 



Silver-stained nucleolar organizer region




Fluorescence in situ hybridization


Genotypic sex determination


Million years ago


Fundamental number, the number of chromosome arms in a somatic cell of a particular species


Phosphate-buffered detergent


Standard sodium citrate


Temperature-dependent sex determination



We thank Š. Pelikánová for her brilliant assistance in the laboratory, C. Ozouf-Costaz for the kind provision of 28 S rDNA probe and P. O’Brien for flow sorting. J. Král, J. Zima, and C.M. Johnson offered many valuable critical comments. The funding to M.P. was provided by the Grant Agency of the Charles University (130/2006-B-BIO and No. 94209) and the projects Synthesys and Thermadapt (ESF), to L.K. by the Czech Science Foundation (projects Nos. 206/06/P282 and 506/10/0718). The institutional supports were given by the Ministry of the Education of the Czech Republic (MSM0021620828) and the Centre for Biodiversity Research (LC 06073). The procedures on animals were held under the approval and supervision of the Ethical Committee of the Faculty of Science, Charles University in Prague. This paper represents the second part of our series “Evolution of sex determining systems in lizards”.


  1. Bertolotto CEV, Rodrigues MT, Yonenaga-Yassuda Y (2001) Banding patterns, multiple sex chromosome system and localization of telomeric (TTAGGG)n sequences by FISH on two species of Polychrus (Squamata, Polychrotidae). Caryologia 54:214–226Google Scholar
  2. Bragg WK, Fawcett JD, Bragg TB, Viets BE (2000) Nest-site selection in two eublepharid gecko species with temperature-dependent sex determination and one with genotypic sex determination. Biol J Linn Soc 69:319–332CrossRefGoogle Scholar
  3. Cattin PM, Ferreira JT (1989) A rapid, non-sacrificial chromosome preparation technique for freshwater teleosts. S Afr J Zool 24:76–78Google Scholar
  4. Deeming DC (2005) Prevalence of TSD in crocodilians. In: Valenzuela N, Lance VA (eds) Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, pp 33–41Google Scholar
  5. Ezaz T, Sarre SD, O'Meally D, Marshall Graves JA, Georges A (2009) Sex chromosome evolution in lizards: independent origins and rapid transitions. Cyt Gen Res 127:249–260CrossRefGoogle Scholar
  6. Fridolfsson AK, Cheng H, Copeland NG, Jenkins NA, Liu HCh, Raudsepp T, Woodage T, Chowdhary B, Halverson J, Ellegren H (1998) Evolution of the avian sex chromosomes from an ancestral pair of autosomes. Proc Nat Acad Sci USA 95:8147–8152CrossRefPubMedGoogle Scholar
  7. Gamble T (2010) A review of sex determining mechanisms in geckos (Gekkota: Squamata). Sex Dev 4:88–103CrossRefPubMedGoogle Scholar
  8. Gamble T, Bauer AM, Greenbaum E, Jackman TR (2008) Out of the blue: a novel, trans-Atlantic clade of geckos (Gekkota, Squamata). Zool Scri 37:355–366CrossRefGoogle Scholar
  9. Gorman GC (1973) The chromosomes of the Reptilia, a cytotaxonomic interpretation. In: Chiarelli AB, Capanna E (eds) Cytotaxonomy and vertebrate evolution. Academic Press, Inc., New York, pp 349–424Google Scholar
  10. Gorman GC, Gress F (1970) Sex chromosomes of a pygopodid Lialis burtonis. Experientia 26:206–207CrossRefPubMedGoogle Scholar
  11. Grismer LL (1988) The phylogeny, taxonomy, classification and biogeography of eublepharid geckos (Reptilia: Squamata). In: Estes R, Pregill J (eds) Phylogenetic relationships within Squamata. Stanford University Press, Stanford, California, pp 369–469Google Scholar
  12. Grismer LL, Viets BE, Boyle LJ (1999) Two new continental species of Goniurosaurus (Squamata; Eublepharidae) with a phylogeny and evolutionary classification of the genus. J Herpetol 33:382–393CrossRefGoogle Scholar
  13. Harlow PS (2004) Temperature-dependent sex determination in lizards. In: Valenzuela N, Lance VA (eds) Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, pp 42–52Google Scholar
  14. Howell WM, Black DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015CrossRefPubMedGoogle Scholar
  15. Janzen FJ, Krenz JG (2004) Phylogenetics: which was first, TSD or GSD? In: Valenzuela N, Lance VA (eds) Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, pp 121–130Google Scholar
  16. Janzen FJ, Phillips PC (2006) Exploring the evolution of enviromental sex determination, especially in reptiles. J Evol Biol 19:1775–1784CrossRefPubMedGoogle Scholar
  17. Jonniaux P, Kumazawa Y (2007) Molecular phylogenetic and dating analyses using mitochondrial DNA sequences of eyelid geckos (Squamata: Eublepharidae). Gene 407:105–115CrossRefPubMedGoogle Scholar
  18. King M (1990) Chromosomal and immunogenetic data: a new perspective on the origin of the Australia‘s reptiles. In: Olmo E (ed) Cytogenetics of amphibians and reptiles. Birkhäuser, Basel, pp 153–180Google Scholar
  19. King M, Rofe R (1976) Karyotypic variation in the Australian gekko Phyllodactylus marmoratus (Gray) (Gekkonidae: Reptilia). Chromosoma 54:75–87CrossRefPubMedGoogle Scholar
  20. Kluge AG (1987) Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc Publ Mus Zool Univ Michigan 173:1–54Google Scholar
  21. Kratochvíl L, Kubička L, Landová E (2008) Does the mechanism of sex determination constrain the potential for sex manipulation? A test in geckos with contrasting sex-determining systems. Naturwissenschaften 95:209–215CrossRefPubMedGoogle Scholar
  22. Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara Ch, Agata K, Matsuda Y (2006) Evidence for different origin of sex chromosomes in snakes, birds, and mammals and stepwise differentiation of snake sex chromosomes. Proc Nat Acad Sci USA 103:18190–18195CrossRefPubMedGoogle Scholar
  23. Matthey R (1933) Nouvelle contribution a l‘etude des chromosomes chez les Sauriens. Rev Suiss Zool 40:281–315Google Scholar
  24. Murphy RW (1974) A new genus and species of eublepharine gecko (Sauria: Gekkonidae) from Baja California, Mexico. Proc Calif Acad Sci 40:87–92Google Scholar
  25. Ota H, Matsui M, Hikida T, Tanaka S (1987) Karyotype of a gekkonid lizard, Eublepharis kuroiwae kuroiwae. Experientia 43:924–925CrossRefGoogle Scholar
  26. Ota H, Honda M, Kobayashi M, Sengoku S, Hikida T (1999) Phylogenetic relationships of eublepharid geckos (Reptilia: Squamata): a molecular approach. Zool Sci 16:659–666CrossRefGoogle Scholar
  27. Pokorná M, Kratochvíl L (2009) Phylogeny of sex-dermining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zool J Linn Soc 156:168–183CrossRefGoogle Scholar
  28. Radder RS, Quinn AE, Georges A, Sarre SD, Shine R (2008) Genetic evidence for co-occurrence of chromosomal and thermal sex-determining systems in a lizard. Biol Lett 4:176–178CrossRefPubMedGoogle Scholar
  29. Rens W, O’Brien PCM, Yang F, Graves JAM, Ferguson-Smith MA (1999) Karyotype relationships between four distantly related marsupials revealed by reciprocal chromosome painting. Chrom Res 7:461–474CrossRefPubMedGoogle Scholar
  30. Rens W, O’Brien PCM, Grützner F, Clarke O, Graphodatskaya D, Tsend-Ayush E, Trifonov VA, Skelton H, Wallis MC, Johnston S, Veyrunez F, Graves JAM, Ferguson-Smith MA (2007) The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z. Gen Biol 8:1–20CrossRefGoogle Scholar
  31. Rhen T, Crews D (2000) Organization and activation of sexual and agonistic behavior in the leopard gecko, Eublepharis macularius. Neuroendocrinol 71:252–261CrossRefGoogle Scholar
  32. Rhen T, Sakata JT, Crews D (2005) Effects of gonadal sex and incubation temperature on the ontogeny of gonadal steroid concentration and secondary sex structures in leopard geckos Eublepharis macularius. Gen Comp Endocrinol 142:289–296CrossRefPubMedGoogle Scholar
  33. Sarre SD, Georges A, Quinn A (2004) The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. BioEssays 26:639–645CrossRefPubMedGoogle Scholar
  34. Schmid M, Löser C, Schmidtke J, Engel W (1982) Evolutionary conservation of a common patterns of activity of nucleolus organizers during spermatogenesis in vertebrates. Chromosoma 86:149–179CrossRefPubMedGoogle Scholar
  35. Seufer H., Kaverkin Y, Kirschner A. (Ed.) (2005) The eyelash geckos, care, breeding and natural history. Kirschner and Seufer, Karlsruhe, GermanyGoogle Scholar
  36. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306CrossRefPubMedGoogle Scholar
  37. Telenius H, Pelmear AH, Tunnacliffe A, Carter NP, Behmel A, Ferguson-Smith MA, Nordenskjöld M, Pfragner R, Ponder BA (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chrom Cancer 4:257–263CrossRefPubMedGoogle Scholar
  38. Tsuda Y, Nishida-Umehara C, Ishijima J, Yamada K, Matsuda Y (2007) Comparison of the Z and W sex chromosomal architectures in elegant crested tinamou (Eudromia elegans) and ostrich (Struthio camelus) and the process of sex chromosome differentiation in palaeognathous birds. Chromosoma 116:159–173CrossRefPubMedGoogle Scholar
  39. Valenzuela N, Adams DC, Janzen FJ (2003) Pattern does not equal process: exactly when is sex environmentally determined? Am Nat 161:676–683CrossRefPubMedGoogle Scholar
  40. Viets BE, Tousignant A, Ewert MA, Nelson CE, Crews D (1993) Temperature-dependent sex determination in the leopard gecko, Eublepharis macularius. J Exp Zool 265:679–683CrossRefPubMedGoogle Scholar
  41. Viets BE, Ewert MA, Talent LG, Nelson CE (1994) Sex-determining mechanisms in squamate reptiles. J Exp Zool 270:45–56CrossRefGoogle Scholar
  42. Volff JN, Nanda I, Schmid M, Schartl M (2007) Governing sex determination in fish: regulatory putsches and ephemeral dictators. Sex Dev 1:85–99CrossRefPubMedGoogle Scholar
  43. Völker ME (2006) Karyotype differentiation in Chromaphyosemion killifishes (Cyprinodontiformes, Nothobranchiidae): patterns, mechanisms and evolutionary implications. pp 1–119. Ph.D. Thesis.Google Scholar
  44. Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642–652CrossRefPubMedGoogle Scholar
  45. Yonenaga-Yassuda Y, Rodrigues MT, Pellegrino KCM (2005) Chromosomal banding patterns in the eyelid-less microteiid lizard radiation: The X1X1X2X2:X1X2Y sex chromosome system in Calyptommatus and the karyotypes of Psilophthalmus and Tretioscincus (Squamata, Gymnophthalmidae). Genetics Mol Biol 28:700–709Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Martina Pokorná
    • 1
    • 2
  • Marie Rábová
    • 2
  • Petr Ráb
    • 2
  • Malcolm A. Ferguson-Smith
    • 3
  • Willem Rens
    • 3
  • Lukáš Kratochvíl
    • 1
  1. 1.Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  2. 2.Department of Vertebrate Evolutionary Biology and Genetics, Institute of Animal Physiology and GeneticsAcademy of Sciences of the Czech RepublicLiběchovCzech Republic
  3. 3.Cambridge Resource Centre for Comparative Genomics, Department of Veterinary MedicineUniversity of CambridgeCambridgeUK

Personalised recommendations