Chromosome Research

, Volume 18, Issue 5, pp 575–586 | Cite as

Characterisation of the chromosome fusions in Oreochromis karongae

  • Jose C. Mota-Velasco
  • Irani Alves Ferreira
  • Marcelo B. Cioffi
  • Konrad Ocalewicz
  • Rafael Campos-Ramos
  • Andrey Shirak
  • Bo-Young Lee
  • Cesar Martins
  • David J. Penman


Oreochromis karongae, one of the “chambo” tilapia species from Lake Malawi, has a karyotype of 2n = 38, making it one of the few species investigated to differ from the typical tilapia karyotype (2n = 44). The O. karongae karyotype consists of one large subtelocentric pair of chromosomes, four medium-sized pairs (three subtelocentric and one submetacentric) and 14 small pairs. The five largest pairs could be distinguished from each other on the basis of size, morphology and a series of fluorescence in situ hybridisation (FISH) probes. The largest pair is easily distinguished on the basis of size and a chromosome 1 (linkage group 3) bacterial artificial chromosome (BAC) FISH probe from Oreochromis niloticus. BAC clones from O. niloticus chromosome 2 (linkage group 7) hybridised to one of the medium-sized subtelocentric chromosome pairs (no. 5) of O. karongae, distinguishing the ancestral medium-sized pair from the three other medium-sized chromosome pairs (nos. 2, 3 and 4) that appear to have resulted from fusions. SATA repetitive DNA hybridised to the centromeres of all 19 chromosome pairs and also revealed the locations of the relic centromeres in the three fused pairs. Telomeric (TTAGGG)n repeats were identified in the telomeres of all chromosomes, and an interstitial telomeric site (ITS) was identified in three chromosomal pairs (no. 2, 3 and 4). Additionally, two ITS sites were identified in the largest chromosome pair (pair 1), confirming the origin of this chromosome from three ancestral chromosomes. SATA and ITS sites allowed the orientation of the fusions in pairs 2, 3 and 4, which all appear to have been in different orientations (q–q, p–q and p–p, respectively). One of these fusions (O. karongae chromosome pair no. 2) involves a small chromosome (equivalent to linkage group 1), which in O. niloticus carries the main sex-determining gene. 4′,6-Diamidino-2-phenyloindole staining of the synaptonemal complex in male O. karongae revealed the presumptive positions of the kinetochores, which correspond well to the centromeric positions observed in the mitotic karyotype.


tilapia chambo Malawi cichlid FISH synaptonemal complex Cyp19b 



Bacterial artificial chromosome


Bovine serum albumin






Degenerate oligonucleotide primed PCR


Fluorescence in situ hybridisation


Fluorescin isothiocyanate


Interstitial telomeric site


Lateral element (of an SC bivalent)


Linkage group


Matrix-assisted laser desorption/ionisation–time of flight


Propidium iodide


Satellite DNA isolated from the tilapia genome by EcoRI digestion and electrophoresis


Synaptonemal complex


Single nucleotide polymorphism


Saline-sodium citrate



J.C. Mota-Velasco was supported by a PhD grant from Consejo Nacional de Ciencia y Tecnologia (CONACYT), México. I.A. Ferreira and M.B. Cioffi were supported by PhD grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil. K. Ocalewicz and R. Campos-Ramos were supported by a grant from the Research Council of Norway, and C. Martins was supported by FAPESP. A. Shirak and B.-Y. Lee were supported by research grant IS-3995-07 from the United States–Israel Binational Agricultural Research and Development (BARD) Fund. We thank Prof Tom Kocher for assistance in several respects, including provision of DNA clones used as FISH probes.

Supplementary material

10577_2010_9141_Fig9_ESM.gif (56 kb)
Supplementary Fig. 1

(GIF 56 kb)

10577_2010_9141_MOESM1_ESM.tif (432 kb)
High resolution image (TIFF 431 kb)
10577_2010_9141_Fig10_ESM.gif (121 kb)
Supplementary Fig. 2

(GIF 121 kb)

10577_2010_9141_MOESM2_ESM.tif (572 kb)
High resolution image (TIFF 571 kb)
10577_2010_9141_Fig11_ESM.gif (259 kb)
Supplementary Fig. 3

(GIF 258 kb)

10577_2010_9141_MOESM3_ESM.tif (998 kb)
High resolution image (TIFF 998 kb)


  1. Campos-Ramos R, Harvey SC, Masabanda JS et al (2001) Identification of putative sex chromosomes in the blue tilapia, Oreochromis aureus, through synaptonemal complex and FISH analysis. Genetica 111:143–153CrossRefPubMedGoogle Scholar
  2. Chang X, Kobayashi T, Senthilkumaran B, Kobayashi-Kajura H, Sudhakumari CC, Nagahama Y (2005) Two types of aromatase with different encoding genes, tissue distribution and developmental expression in Nile tilapia (Oreochromis niloticus). Gen Comp Endocrinol 141:101–115CrossRefPubMedGoogle Scholar
  3. Cnaani A, Lee B-Y, Zilberman N et al (2008) Genetics of sex determination in tilapiine species. Sex Dev 2:43–54CrossRefPubMedGoogle Scholar
  4. Denton TE (1973) Fish chromosome methodology. CC Thomas, SpringfieldGoogle Scholar
  5. Ezaz MT, Harvey SC, Boonphakdee C, Teale AJ, McAndrew BJ, Penman DJ (2004) Isolation and physical mapping of sex-linked AFLP markers in Nile tilapia (Oreochromis niloticus L.). Mar Biotechnol 6:435–445CrossRefPubMedGoogle Scholar
  6. Ferreira IA, Martins C (2008) Physical chromosome mapping of repetitive DNA sequences in Nile tilapia Oreochromis niloticus: evidences for a differential distribution of repetitive elements in the sex chromosomes. Micron 39:411–418CrossRefPubMedGoogle Scholar
  7. Ferreira IA, Poletto AB, Mota-Velasco J, Penman DJ, Kocher TD, Martins C (2010) Chromosome evolution in African Cichlid fish: contributions from the physical mapping of repeated DNAs. Cytogenetics and Genome Research (in press)Google Scholar
  8. Foresti F, Oliveira C, Galetti PM, de Almeida-Toledo LF (1993) Synaptonemal complex analysis–analysis in spermatocytes of tilapia, Oreochromis niloticus (Pisces, Cichlidae). Genome 36:1124–1128CrossRefPubMedGoogle Scholar
  9. Franck JPC, Wright JM, McAndrew BJ (1992) Genetic variability in a family of satellite DNAs from tilapia (Pisces: Cichlidae). Genome 35:719–725PubMedGoogle Scholar
  10. Harvey SC, Powell SF, Kennedy DD, McAndrew BJ, Penman DJ (2002a) Karyotype analysis of Oreochromis mortimeri (Trewavas) and Sarotherodon melanotheron (Rüppell). Aquac Res 33:339–342CrossRefGoogle Scholar
  11. Harvey SC, Campos-Ramos R, Kennedy RR et al (2002b) Karyotype evolution in Tilapia: mitotic and meiotic chromosome analysis of Oreochromis karongae and O. niloticus × O. karongae hybrids. Genetica 115:169–177CrossRefPubMedGoogle Scholar
  12. Harvey SC, Kwon JY, Penman DJ (2003) Physical mapping of the brain and ovarian aromatase genes in the Nile tilapia, Oreochromis niloticus, by fluorescence in situ hybridization. Anim Genet 34:62–64CrossRefPubMedGoogle Scholar
  13. Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19:4780CrossRefPubMedGoogle Scholar
  14. Jurinke C, van den Boom D, Cantor CR, Koster H (2002) Automated genotyping using the DNA MassArray technology. Meth Mol Biol 187:179–192Google Scholar
  15. Katagiri T, Kidd C, Tomasino E et al (2005) A BAC-based physical map of the Nile tilapia genome. BMC Genomics 89:1–17Google Scholar
  16. Klinkhardt M, Tesche M, Greven H (1995) Database of fish chromosomes. Westarp Wissenschaften, MagdeburgGoogle Scholar
  17. Lee BY, Kocher TD (2007) Exclusion of Wilms tumour (WT1b) and ovarian cytochrome P450 aromatase (CYP19A1) as candidates for sex determination genes in Nile tilapia (Oreochromis niloticus). Anim Genet 38:85–86CrossRefPubMedGoogle Scholar
  18. Lee BY, Penman DJ, Kocher TD (2003) Identification of a sex-determining region in Nile tilapia (Oreochromis niloticus) using bulked segregant analysis. Anim Genet 34:379–383CrossRefPubMedGoogle Scholar
  19. Lee BY, Hulata G, Kocher TD (2004) Two unlinked loci controlling the sex of blue tilapia (Oreochromis aureus). Heredity 92:543–549CrossRefPubMedGoogle Scholar
  20. Lee BY, Lee WJ, Streelman JT et al (2005) A second-generation genetic linkage map of tilapia (Oreochromis spp.). Genetics 170:237–244CrossRefPubMedGoogle Scholar
  21. Majumdar KC, McAndrew BJ (1986) Relative DNA content of somatic nuclei and chromosomal studies in three genera, Tilapia, Sarotherodon, and Oreochromis of the tribe Tilapiini (Pisces, Cichlidae). Genetica 68:175–188CrossRefGoogle Scholar
  22. Martins C, Galetti PM Jr (2001) Organization of 5S rDNA in species of the fish Leporinus: two different genomic locations are characterized by distinct non transcribed spacers. Genome 44:903–910CrossRefPubMedGoogle Scholar
  23. Mitelman F (ed) (1995) An International System for Human Cytogenetic Nomenclature (ISCN). Karger/Cytogenetics and Cell Genetics, BaselGoogle Scholar
  24. Ocalewicz K, Mota-Velasco JC, Campos-Ramos R, Penman DJ (2009) FISH and DAPI staining of the synaptonemal complex of the Nile tilapia (Oreochromis niloticus) allow orientation of the unpaired region of bivalent 1 observed during early pachytene. Chromosome Res 17:773–782CrossRefPubMedGoogle Scholar
  25. Oliveira C, Wright JM (1998) Molecular cytogenetic analysis of heterochromatin in the chromosomes of tilapia, Oreochromis niloticus (Teleostei: Cichlidae). Chromosome Res 6:205–211CrossRefPubMedGoogle Scholar
  26. Oliveira C, Chew JSK, Foresti FP, Dobson M, Wright JM (1999) A LINE2 repetitive DNA sequence from the cichlid fish, Oreochromis niloticus: sequence analysis and chromosomal distribution. Chromosoma 108:457–468CrossRefPubMedGoogle Scholar
  27. Park EH (1974) A list of the chromosome numbers of fishes. Coll Rev Lib Arts and Sciences Seoul Nat Univ 20:346–372Google Scholar
  28. Phillips RB, Amores A, Morasch MR, Wilson C, Postlethwait JH (2006a) Assignment of zebrafish genetic linkage groups to chromosomes. Cytogenet Genome Res 114:155–162CrossRefPubMedGoogle Scholar
  29. Phillips RB, Nichols KM, DeKoning JJ et al (2006b) Assignment of rainbow trout linkage groups to specific chromosomes. Genetics 174:1661–1670CrossRefPubMedGoogle Scholar
  30. Piferrer F, Blázquez M (2005) Aromatase distribution and regulation in fish. Fish Physiol Biochem 31(2–3):215–226CrossRefPubMedGoogle Scholar
  31. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938CrossRefPubMedGoogle Scholar
  32. Post A (1965) Vergleichende Untersuchungen der Chromosomenzahlen bei Susswasser Teleosteem. Z Zoolog Syst Evol Forsch 3:47–93Google Scholar
  33. Shirak A, Seroussi E, Cnaani A et al (2006) Amh and Dmrta2 genes map to Tilapia (Oreochromis spp.) linkage group 23 within QTL regions for sex determination. Genetics 174(3):1573–1581CrossRefPubMedGoogle Scholar
  34. Sodsuk P, McAndrew BJ, Turner GF (1995) Evolutionary relationships of the Lake Malawi Oreochromis species: evidence from allozymes. J Fish Biol 47:321–333Google Scholar
  35. Sullivan BA, Schwartz S (1995) Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum Mol Genet 4:2189–2197CrossRefPubMedGoogle Scholar
  36. Sullivan BA, Willard HF (1998) Stable dicentric X chromosomes with two functional centromeres. Nat Genet 20:227–228CrossRefPubMedGoogle Scholar
  37. Thompson KW (1981) Karyotypes of six species of African Cichlidae (Pisces: Perciformes). Experientia 37:351–352CrossRefPubMedGoogle Scholar
  38. Trewavas E (1983) Tilapiine Fishes of the Genera Sarotherodon, Oreochromis and Danakilia. British Museum (Natural History), LondonGoogle Scholar
  39. Turner GF, Robinson RL (1991) Ecology, morphology and taxonomy of the Lake Malawi Oreochromis (Nyasalapia) species flock. Ann Mus R Afr Cent Sci Zool 262:23–28Google Scholar
  40. Volff JN, Nanda A, Schmid M, Schartl M (2007) Governing sex determination in fish: regulatory putsches and ephemeral dictators. Sex Dev 1:85–99CrossRefPubMedGoogle Scholar
  41. Wallace BMN, Wallace H (2003) Synaptonemal complex karyotype of zebrafish. J Hered 90:136–140CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jose C. Mota-Velasco
    • 1
    • 2
  • Irani Alves Ferreira
    • 3
  • Marcelo B. Cioffi
    • 4
  • Konrad Ocalewicz
    • 1
    • 5
  • Rafael Campos-Ramos
    • 1
    • 6
  • Andrey Shirak
    • 7
  • Bo-Young Lee
    • 8
    • 9
  • Cesar Martins
    • 3
  • David J. Penman
    • 1
  1. 1.Institute of AquacultureUniversity of StirlingStirlingUK
  2. 2.Landcatch Natural SelectionThe e.Centre, Cooperage Way Business VillageClackmannanshireUK
  3. 3.Departamento de Morfologia, Instituto de BiociênciasUNESP–Universidade Estadual PaulistaBotucatuBrazil
  4. 4.Departamento de Genética e Evolução, Centro de Ciências Biológicas e da SaúdeUniversidade Federal de São CarlosSão CarlosBrazil
  5. 5.Department of IchthyologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
  6. 6.Centro de Investigaciones Biológicas del Noroeste S.C. (CIBNOR)La PazMexico
  7. 7.Institute of Animal Science, Agricultural Research OrganizationVolcani CenterBet DaganIsrael
  8. 8.Department of BiologyUniversity of MarylandCollege ParkUSA
  9. 9.Laboratory of Bioinformatics and Population Genetics, Department of Agricultural BiotechnologySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations